Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a baseband model and an enhanced implementation of the wireless full duplex analog method introduced by [1].Unlike usual methods based on hardware and software self- interference cancelation, the proposed design relies on FSK modulation. The principle is when the transmitter of a local end is sending data by modulating the carrier with the appropriate frequency deviation, its own receiver is checking if the remote transmitter is using the opposite deviation. Instead of architectures often used by both non-coherent and coherent receivers that require one filter (matched filter for coherent detection) for each frequency deviation, our design uses one mixer and one single integrator-decimator filter. We test our design using Universal Software Radio Peripheral as radio frequency front end and computer that implements the signal processing methods under free and open source software. We validate our solution experimentally and we show that in-band full duplex is feasible and synthesizable for wireless communications.

Go to article

Authors and Affiliations

Jelloul Elmesbahi
Mohammed Khaldoun
Ahmed Errami
Mohammed El Khattabi
Omar Bouattane
Download PDF Download RIS Download Bibtex

Abstract

With improved technological successions, wireless communication applications have been incessantly evolving. Owing to the challenges posed by the multipath wireless channel, radio design prototypes have become elemental in all wireless systems before deployment. Further, different signal processing requirements of the applications, demand a highly versatile and reconfigurable radio such as Software Defined Radio (SDR) as a crucial device in the design phase. In this paper, two such SDR modules are used to develop an Orthogonal Frequency Division Multiplexing (OFDM) wireless link, the technology triumphant ever since 4G. In particular, a non-coherent end-to-end OFDM wireless link is developed in the Ultra High Frequency (UHF) band at a carrier frequency of 470 MHz. The transmitter includes Barker sequences as frame headers and pilot symbols for channel estimation. At the receiver, pulse alignment using Max energy method, frame synchronization using sliding correlator approach and carrier offset correction using Moose algorithm are incorporated. In addition, wireless channel is estimated using Least Square (LS) based pilot aided channel estimation approach with denoising threshold and link performance is analyzed using average Bit Error Rate (BER), in different pilot symbol scenarios. In a typical laboratory environment, the results of BER versus receiver gain show that with 4 pilot symbols out of 128 carriers, at a gain of 20 dB, BER is 0.160922, which is reduced to 0.136884 with 16 pilot symbols. The developed link helps OFDM researchers to mitigate different challenges posed by the wireless environment and thereby strengthen OFDM technology.
Go to article

Authors and Affiliations

Nandana Narayana
1
Pallaviram Sure
1

  1. Department of Electronics and Communication Engineering, MS Ramaiah University of Applied Sciences, Bangalore, India
Download PDF Download RIS Download Bibtex

Abstract

This paper details a hardware implementation of a distributed Θ(1) time algorithm allows to select dynamically the master device in ad-hoc or cluster-based networks in a constant time regardless the number of devices in the same cluster. The algorithm allows each device to automatically detect its own status; master or slave; based on identifier without adding extra overheads or exchanging packets that slow down the network. We propose a baseband design that implements algorithm functions and we detail the hardware implementation using Matlab/Simulink and Ettus B210 USRP. Tests held in laboratory prove that algorithm works as expected.

Go to article

Authors and Affiliations

Mohammed El Khattabi
Jelloul Elmesbahi
Ahmed Errami and Omar Bouattane Mohammed Khaldoun

This page uses 'cookies'. Learn more