Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

At the end of 2018, when the Hučivá Cave (Hučivá diera, Rausch Keller) was explored in Tatranská Lomnica, profile deposits in rear areas of the cave were found disturbed by an amateur excavation. One stone artefact was first found in back-dirt clay-layer material at the excavation pit, later joined by four more specimens from the cleaned pit profile. The Typological analysis of the artefacts shows, that their closest parallels are found in inventories of the Magdalenian culture. Hučivá is the only cave in the whole Tatras with documented prehistoric settlement and the only Slovak cave with evidence of the Magdalenian culture. The discovery provides new information concerning subsistence strategies of late Pleistocene hunters in High Tatra Mountain landscapes. In light of this discovery, the possibility of seasonal movements along the northern slopes of this mountains range to the east and then south, through the mountain passes to the upper Spiš region should now be considered.

Go to article

Authors and Affiliations

Paweł Valde-Nowak
Marián Soják
Download PDF Download RIS Download Bibtex

Abstract

Herein are presented the results of detailed bio- (calcareous dinocysts, calpionellids, foraminifers, saccocomids) and chemostratigraphic (δ13C) studies combined with high-resolution microfacies, rock magnetic and gamma-ray spectrometry (GRS) investigations performed on the upper Kimmeridgian–upper Valanginian carbonates of the Giewont succession (Tatricum, Giewont and Mały Giewont sections, Western Tatra Mountains, Poland). The interval studied covers the contact between the Raptawicka Turnia Limestone (RTL) Fm. and the Wysoka Turnia Limestone (WTL) Fm. Their sedimentary sequence is composed of micrites, pseudonodular limestones, cyanoid packstones, lithoclastic packstone and encrinites. A precise correlation with the previously published Mały Giewont section is ensured by biostratigraphy, rock magnetic and GRS logs. The methodology adopted has enabled the recognition of two stratigraphic discontinuities, approximated here as corresponding to the latest Tithonian–early (late?) Berriasian and the early Valanginian. The hiatuses are evidenced by biostratigraphic data and the microfacies succession as well as by perturbations in isotopic compositions and rock magnetic logs; they are thought to result from a conjunction of tectonic activity and eustatic changes. A modified lithostratigraphic scheme for the Giewont and the Osobita High-Tatric successions is proposed. The top of the RTL Fm. falls in the upper Tithonian, where cyanoid packstones disappear. At the base of the WTL Fm. a new Giewont Member is defined as consisting of a basal lithoclastic packstone and following encrinites.
Go to article

Authors and Affiliations

Damian Gerard Lodowski
1
Andrzej Pszczółkowski
2
Andrzej Wilamowski
3
Jacek Grabowski
3

  1. Faculty of Geology, University of Warsaw, ul. Żwirki i Wigury 93, 02-089 Warsaw, Poland
  2. Institute of Geological Sciences, Polish Academy of Sciences, Warszawa Research Centre, ul. Twarda 51/55, 00-818 Warsaw, Poland
  3. Polish Geological Institute-National Research Institute, ul. Rakowiecka 4, 00-975 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Climate deterioration of the Little Ice Age was manifested in the most spectacular way in the glaciated high mountains, but it should also be analysed in term of a climatic concept. Spatial variation in LIA climate is illustrated also in non-glaciated areas of the Northern Hemisphere in a broader contex. Extreme climatic events were forcing factors for mountain slope deformation by geomorphic processes in the High Tatra Mountains. The old chronicles, lichenometric dating of landforms and lacustrine sediments are used to determine the beginning of "Little Ice Age - type events" (about AD 1400) and its end (about AD 1920). During this time span the set of climatic conditions responsible for triggering high-energy geomorphic processes was recognised. The catastrophic hydrometeorological events were concentrated in certain periods. Clustering of weather anomalies and natural disasters resulting from them are discussed in the paper.
Go to article

Authors and Affiliations

Adam Kotarba
Download PDF Download RIS Download Bibtex

Abstract

The Lower Jurassic to Aalenian carbonate-clastic Dudziniec Formation exposed in the autochthonous unit of the Tatra Mountains (Kościeliska Valley) hosts neptunian dykes filled with various deposits. The development of the fissures took place in multiple stages, with the same fractures opening several times, as is indicated by their architecture, occurrence of internal breccias and arrangement of the infilling sediments. Various types of internal deposits were derived in a different manner and from different sources. Fine carbonate sediments, represented by variously coloured pelitic limestones, calcilutites and fine calcarenites, most probably come from uplifted and corroded carbonate massifs (possibly from the allochthonous units of the High-Tatric succession). Products of weathering, both in dissolved form and as small particles, were washed into the sedimentary basin of the autochthonous unit, and redeposited within the dykes. The sandy varieties of the infillings, represented by red, ferruginous calcareous sandstones, come directly from the host rocks or from loose sediments present on the sea bottom at the time of fracturing. The most probable age of the infilling sediments is Sinemurian to Pliensbachian. The occurrence of dykes of this age is yet another feature confirming that the sedimentary development of the Lower Jurassic sandy-carbonate facies in the autochthonous unit was strongly influenced by synsedimentary tectonic activity, such as block-faulting.

Go to article

Authors and Affiliations

Piotr Łuczyński
Anna Jezierska

This page uses 'cookies'. Learn more