Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A mixed pseudo-orthogonal frequency coding (Mixed-POFC) structure is proposed as a new spreadspectrum technique in this paper, which employs frequency and time diversity to enhance tag properties and balances the spectrum utilization and code diversity. The coding method of SAW RFID tags in this paper uses Mixed-POFC with multi-track chip arrangements. The cross-correlation and auto correlation of Mixed-POFC and POFC are calculated to demonstrate the reduced overlap between the adjacent center frequencies with the Mixed-POFC method. The center frequency of the IDT and Bragg reflectors is calculated by a coupling of modes (COM) module. The combination of the calculation results of the Bragg reflectors shows that compared with a 7-chip POFC, the coding number of a 7-chip Mixed-POFC is increased from 120 to 144 with the same fractional bandwidth of 12%. To demonstrate the validity of Mixed-POFC, finite element analysis (FEA) technology is used to analyze the frequency characteristics of Mixed-POFC chips. The maximum error between designed frequencies and simulation frequencies is only 1.7%, which verifies that the Mixed-POFC method is feasible.

Go to article

Authors and Affiliations

Mengru Xu
Xia Xiao
Qing Yuan
Yong Zong
Download PDF Download RIS Download Bibtex

Abstract

This research determines an identification system for the types of Beiguan music – a historical, nonclassical music genre – by combining artificial neural network (ANN), social tagging, and music information retrieval (MIR). Based on the strategy of social tagging, the procedure of this research includes: evaluating the qualifying features of 48 Beiguan music recordings, quantifying 11 music indexes representing tempo and instrumental features, feeding these sets of quantized data into a three-layered ANN, and executing three rounds of testing, with each round containing 30 times of identification. The result of ANN testing reaches a satisfying correctness (97% overall) on classifying three types of Beiguan music. The purpose of this research is to provide a general attesting method, which can identify diversities within the selected non-classical music genre, Beiguan. The research also quantifies significant musical indexes, which can be effectively identified. The advantages of this method include improving data processing efficiency, fast MIR, and evoking possible musical connections from the high-relation result of statistical analyses.
Go to article

Bibliography

1. Briot J.-P., Hadjeres G., Pachet F.-D. (2019), Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, arXiv: 1709.01620.
2. Hagan M.T., Demuth H.B., Beale M. (2002), Neural Network Design, CITIC Publishing House, Beijing.
3. Lamere P. (2008), Social tagging and music information retrieval, Journal of New Music Research, 37(2): 101–114, doi: 10.1080/09298210802479284.
4. Lu C.-K. (2011), Beiguan Music, Taichung, Taiwan: Morningstar.
5. Pan J.-T. (2019), The transmission of Beiguan in higher education in Taiwan: A case study of the teaching of Beiguan in the department of traditional music of Taipei National University of the Arts [in Chinese], Journal of Chinese Ritual, Theatre and Folklore, 2019.3(203): 111–162.
6. Rosner A., Schuller B., Kostek B. (2014), Classification of music genres based on music separation into harmonic and drum components, Archives of Acoustics, 39(4): 629–638, doi: 10.2478/aoa-2014-0068.
7. Tzanetakis G., Kapur A., Scholoss W.A., Wright M. (2007), Computational ethnomusicology, Journal of Interdisciplinary Music Studies, 1(2): 1–24.
8. Wiering F., de Nooijer J., Volk A., Tabachneck- Schijf H.J.M. (2009), Cognition-based segmentation for music information retrieval systems, Journal of New Music Research, 38(2): 139–154, doi: 10.1080/09298210903171145.
9. Yao S.-N., Collins T., Liang C. (2017), Head-related transfer function selection using neural networks, Archives of Acoustics, 42(3): 365–373, doi: 10.1515/aoa-2017-0038.
10. Yeh N. (1988), Nanguan music repertoire: categories, notation, and performance practice, Asian Music, 19(2): 31–70, doi: 10.2307/833866.
Go to article

Authors and Affiliations

Yu-Hsin Chang
1
Shu-Nung Yao
2

  1. Department of Music, Tainan National University of the Arts, No. 66, Daqi, Guantian Dist., Tainan City 72045, Taiwan
  2. Department of Electrical Engineering, National Taipei University, No. 151, University Rd., Sanxia District, New Taipei City 237303, Taiwan
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of part of speech (POS) tagging for the Tamil language, which is low resourced and agglutinative. POS tagging is the process of assigning syntactic categories for the words in a sentence. This is the preliminary step for many of the Natural Language Processing (NLP) tasks. For this work, various sequential deep learning models such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bi-directional Long Short-Term Memory (Bi-LSTM) were used at the word level. For evaluating the model, the performance metrics such as precision, recall, F1-score and accuracy were used. Further, a tag set of 32 tags and 225 000 tagged Tamil words was utilized for training. To find the appropriate hidden state, the hidden states were varied as 4, 16, 32 and 64, and the models were trained. The experiments indicated that the increase in hidden state improves the performance of the model. Among all the combinations, Bi-LSTM with 64 hidden states displayed the best accuracy (94%). For Tamil POS tagging, this is the initial attempt to be carried out using a deep learning model.
Go to article

Bibliography

  1.  R. Rajimol and V.S. Anoop, “A framework for named entity recognition for Malayalam – A Comparison of different deep learning ar- chitectures,” Nat. Lang. Process. Res., vol. 1, pp.  14–22, 2020.
  2.  Y. Liu et al., “Multilingual denoising pre-training for neural machine translation,” Trans. Assoc. Comput. Ling., vol. 8, pp. 726–742, 2020.
  3.  K.S. Kalaivani and S. Kuppuswami, “Exploring the use of syntactic dependency features for document-level sentiment classification,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, pp. 339–347, 2019, doi: 10.24425/bpas.2019.128608.
  4.  S. Anbukkarasi and S. Varadhaganapathy, “Machine Translation (MT) techniques for Indian Languages,” Int. J. Recent Technol. Eng., vol. 8, 86–90, 2019, doi: 10.35940/ijrte.B1015.0782S419.
  5.  E. Brill, “A simple rule-based part of speech tagger,” in Proc. 3rd Conference on Applied Natural Language Processing, Association for Computational Linguistics, 1992, pp. 152–155, doi: 10.3115/974499.974526.
  6.  T. Berg-Kirkpatrick, A. Bouchard-Côté, J. DeNero, and D. Klein, “Painless unsupervised learning with features,” in Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, 2010, pp. 582–590.
  7.  N. Bölücü and B. Can, “Joint PoS tagging and stemming for agglutinative languages,” in Proc. of the International Conference on Com- putational Linguistics and Intelligent Text Processing, 2017, pp. 110–122.
  8.  P. Arulmozhi, T. Pattabhi R.K. Rao and L. Sobha, “A Hybrid POS Tagger for a Relatively Free Word Order Language,” [Online]. Available https://www.academia.edu/23833233/A_Hybrid_POS_Tagger_for_a_Relatively_Free_Word_Order_Language (Accessed: Jan, 10, 2021)
  9.  J. Singh, N. Joshi, and I. Mathur, “Development of Marathi part of speech tagger using statistical approach,” in Proc. of International Conference on Advances in Computing, Communications and Informatics, 2013, pp. 1554–1559.
  10.  M. Ramanathan, V. Chidambaram, and A. Patro, “An Attempt at Multilingual POS Tagging for Tamil,” [Online]. Available http://pages. cs.wisc.edu/~madhurm/CS769_final_report.pdf (Accessed: Jan. 10. 2021).
  11.  N. Bölücü, B. Can, “A Cascaded Unsupervised Model for PoS Tagging,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 20, pp. 1–23, Mar. 2021, doi: 10.1145/3447759.
  12.  S. Adinarayanan and N.S. Ranjaniee, “Part-of speech tagger for sanskrit. A state of art survey,” Int. J. Appl. Eng. Res., vol. 10, pp. 24173– 24178, 2015. doi: 10.37200/IJPR/V23I1/PR190243.
  13.  H. Ali, Unsupervised Parts-of-Speech Tagger for the Bangla language, Department of Computer Science. University of British Colum- bia, 2010. [Online]. Available: https://www.cs.ubc.ca/~carenini/TEACHING/CPSC503-09/FINAL-REPORTS-08/hammad-report1.1.pdf (Accessed: Jan. 10. 2021).
  14.  K. Stratos, M. Collins, and D. Hsu, “Unsupervised part-of-speech tagging with anchor hidden markov models,” Trans. Assoc. Comput. Ling., vol. 4, pp. 245–257, 2016, doi: 10.1162/tacl_a_00096.
  15.  K. Sarkar and V. Gayen, “A trigram HMM-based POS tagger for Indian languages,” in Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), 2013, pp. 205–212.
  16.  M. Banko and R.C. Moore, “Part of speech tagging in context,” in Proc. 20th International Conference on Computational Linguistics, 2004, 556, doi: 10.3115/1220355.1220435.
  17.  Z. Huang, W. Xu, and K. Yu, “Bidirectional lstm-crf models for sequence tagging,” 2015. [Online]. Available: https://arxiv.org/ abs/1508.01991 (Accessed: Jan. 10. 2021).
  18.  M. Thayaparan, S. Ranathunga, and U. Thayasivam, “Graph Based Semi-Supervised Learning for Tamil POS Tagging.” FIRE 2014, [Online]. Available: https://aclanthology.org/L18-1624.pdf (Accessed: Jan. 10. 2021).
  19.  B. Plank, A. Søgaard, and Y. Goldberg, “Multilingual part-of-speech tagging with bidirectional long short-term memory models and auxiliary loss,” in Proc. 54th Annu. Association for Computational Linguistics, 2016, pp. 412–418.
  20.  M. Rajasekar and A. Udhayakumar, “POS Tagging Using Naive Bayes Algorithm For Tamil,” Int. J. Sci. Eng. Technol. Res., vol. 9, pp. 574–578, Feb. 2020.
  21.  J. Singh, L. Singh Garcha, and S. Singh, “A Survey on Parts of Speech Tagging for Indian Languages,” Int. J. Adv. Res. Comput. Sci. Software Eng., vol. 7, no. 4, Apr. 2017.
  22.  V. Dhanalakshmi, A.M. Kumar, and K.P. Soman, and S. Rajendran, “POS Tagger and Chunker for Tamil Language,” Proceedings of the 8th Tamil Internet Conference, Cologne, Germany, 2009.
  23.  K.K. Akhil, R. Rajimol, and V.S. Anoop, “Parts-of-Speech tagging for Malayalam using deep learning techniques,” Int. J. Inf. Technol., vol. 12, pp. 741–748, 2020, doi: 10.1007/s41870-020-00491-z.
  24.  E. Lukasik et al., “Recognition of handwritten Latin characters with diacritics using CNN,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 1, p. e136210, 2021, doi: 10.24425/bpasts.2020.136210.
  25.  D. Andor et al., “Globally normalized transition-based neural networks,” in Proc. 54th Annu. Association for Computational Linguistics, Berlin, Germany, 2016, pp. 2442–2452.
  26.  M. Yan et al., “A deep cascade model for multi-document reading comprehension,” in Proc. of The Thirty-Third AAAI Conference on Artificial Intelligence, 2018, pp. 7354–7361.
  27.  P. Wang, Y. Qian, F.K. Soong, L. He, and Z. Hai, “Part-of-speech tagging with bidirectional long short-term memory recurrent neural network,” [Online]. Available: https://arxiv.org/abs/1510.06168v1
  28.  Keras, [Online] Available: https://keras.io/ (Accessed: 30.03.21).
Go to article

Authors and Affiliations

S. Anbukkarasi
1
S. Varadhaganapathy
2

  1. Department of Computer Science and Engineering, Kongu Engineering College, India
  2. Department of Information Technology, Kongu Engineering College, India
Download PDF Download RIS Download Bibtex

Abstract

The three-dimensional (3D) coordinate measurement of radio frequency identification (RFID) multi-tag

networks is one of the important issues in the field of RFID, which affects the reading performance of

RFID multi-tag networks. In this paper, a novel method for 3D coordinate measurement of RFID multitag

networks is proposed. A dual-CCD system (vertical and horizontal cameras) is used to obtain images of

RFID multi-tag networks from different angles. The iterative threshold segmentation and the morphological

filtering method are used to process the images. The template matching method is respectively used to

determine the two-dimensional (2D) coordinate and the vertical coordinate of each tag. After that, the

3D coordinate of each tag is obtained. Finally, a back-propagation (BP) neural network is used to model

the nonlinear relationship between the RFID multi-tag network and the corresponding reading distance.

The BP neural network can predict the reading distances of unknown tag groups and find out the optimal

distribution structure of the tag groups corresponding to the maximum reading distance. In the future work,

the corresponding in-depth research on the neural network to adjust the distribution of tags will be done.

Go to article

Authors and Affiliations

Zhuang Xiao
Xiaolei Yu
Zhimin Zhao
Wenjie Zhang
Zhenlu Liu
Dongsheng Lu
Dingbang Dong
Download PDF Download RIS Download Bibtex

Abstract

Bread wheat is a major food crop on a global scale. Stripe rust, caused by Puccinia striiformis f. sp. tritici, has become one of the largest biotic stresses and limitations for wheat production in the 21st century. Post 2000 races of the pathogen are more virulent and able to overcome the defense of previously resistant cultivars. Despite the availability of effective fungicides, genetic resistance is the most economical, effective, and environmentally friendly way to control the disease. There are two major types of resistance to stripe rust: all-stage seedling resistance (ASR) and adult-plant resistance (APR). Although both resistance types have negative and positive attributes, ASR generally is race-specific and frequently is defeated by new races, while APR has been shown to be race non-specific and durable over time. Finding genes with high levels of APR has been a major goal for wheat improvement over the past few decades. Recent advancements in molecular mapping and sequencing technologies provide a valuable framework for the discovery and validation of new sources of resistance. Here we report the discovery of a precise molecular marker for a highly durable type of APR – high-temperature adult-plant (HTAP) resistance locus in the wheat cultivar Louise. Using a Louise × Penawawa mapping population, coupled with data from survey sequences of the wheat genome, linkage mapping, and synteny analysis techniques, we developed an amplified polymorphic sequence (CAPS) marker LPHTAP2B on the short arm of wheat chromosome 2B, which cosegregates with the resistant phenotype. LPHTAP2B accounted for 62 and 58% of phenotypic variance of disease severity and infection type data, respectively. Although cloning of the LPHTAP2B region is needed to further understand its role in durable resistance, this marker will greatly facilitate incorporation of the HTAP gene into new wheat cultivars with durable resistance to stripe rust.

Go to article

Authors and Affiliations

Taras Nazarov
Xianming Chen
Arron Carter
Deven See
Download PDF Download RIS Download Bibtex

Abstract

RFID systems are one of the essential technologies and used many diverse applications. The security and privacy are the primary concern in RFID systems which are overcome by using suitable authentication protocols. In this manuscript, the costeffective RFID-Mutual Authentication (MA) using a lightweight Extended Tiny encryption algorithm (XTEA) is designed to overcome the security and privacy issues on Hardware Platform. The proposed design provides two levels of security, which includes secured Tag identification and mutual authentication. The RFIDMA mainly has Reader and Tag along with the backend Server. It establishes the secured authentication between Tag and Reader using XTEA. The XTEA with Cipher block chaining (CBC) is incorporated in RFID for secured MA purposes. The authentication process completed based on the challenge and response between Reader and Tag using XTEA-CBC. The present work is designed using Verilog-HDL on the Xilinx environment and implemented on Artix-7 FPGA. The simulation and synthesis results discussed with hardware constraints like Area, power, and time. The present work is compared with existing similar approaches with hardware constraints improvements.
Go to article

Bibliography

[1] A. Ibrahim and G. Dalkılıc, “Review of different classes of RFID authentication protocols,” Wireless Networks, Vol.25, No. 3, pp.961-974, 2019, https://doi.org/10.1007/s11276-017-1638-3
[2] G. Hatzivasilis, K. Fysarakis, I. Papaefstathiou and C. Manifavas. “A review of lightweight block ciphers,” Journal of Cryptographic Engineering, Vol. 8, No. 2, pp.141-184, 2018, https://doi.org/10.1007/s13389-017-0160-y
[3] J. Kaur, A. Kumar, M. Bansal. “Lightweight cipher algorithms for smart cards security: A survey and open challenges,” 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 541-546, 2017, https://doi.org/10.1109/ISPCC.2017.8269738
[4] X. Chen, K. Ma, D. Geng, J. Zhai, W. Liu, H. Zhang, T. Zhu, and X. Piao. “Untraceable Analysis of Scalable RFID Security Protocols,” Wireless Personal Communications, pp.1-21,2019, https://doi.org/10.1007/s11277-019-06650-1
[5] M.G. Samaila, M. Neto, D. AB. Fernandes, M. M. Freire, and P. RM. Inácio. “Security challenges of the Internet of Things,” Beyond the Internet of Things, pp. 53-82, 2017.
[6] M. M-Kermani, K. Tian, R. Azarderakhsh, and S. B-Sarmadi, “Fault-resilient lightweight cryptographic block ciphers for secure embedded systems,” IEEE Embedded Systems Letters, Vol. 6, No. 4, pp.89-92, 2014, https://doi.org/10.1109/LES.2014.2365099
[7] Y.S. Kang, E.O. Sullivan, D. Choi, and M. O’Neill, “Security Analysis on RFID Mutual Authentication Protocol,” in International Workshop on Information Security Applications, Springer, Cham, pp. 65-74, 2015, https://doi.org/https://doi.org/10.1007/978-3-319-31875-2_6
[8] M. Feldhofer and J. Wolkerstorfer, “Hardware implementation of symmetric algorithms for RFID security,” in RFID security, Springer, Boston, MA, pp. 373-415, 2008, https://doi.org/10.1007/978-0-387-76481-8_15
[9] B. Toiruul and K.O. Lee, “An advanced mutual-authentication algorithm using AES for RFID systems,” International Journal of Computer Science and Network Security, Vol. 6, No. 9B, pp.156-162, 2006
[10] M. Feldhofer, S. Dominikus and J. Wolkerstorfer, “Strong authentication for RFID systems using the AES algorithm,” in International Workshop on Cryptographic Hardware and Embedded Systems, Springer, Berlin, Heidelberg, pp. 357-370, 2004.
[11] R. Baashirah, A. Kommareddy, S. K. Batchu, V. Sunku, R. S. Ginjupalli, and S. Abuzneid, “Security implementation using present-puffin protocol in RFID devices,” in IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1-5, 2018, https://doi.org/10.1109/LISAT.2018.8378024
[12] N. Dinarvand and H. Barati, “An efficient and secure RFID authentication protocol using elliptic curve cryptography,” Wireless Networks, Vol. 25, No. 1, pp.415-428, 2019, https://doi.org/10.1007/s11276-017-1565-3
[13] J. Kang, “Lightweight mutual authentication RFID protocol for secure multi-tag simultaneous authentication in ubiquitous environments,” The Journal of Supercomputing, Vol. 75, No. 8, pp. 4529-4542, 2019, https://doi.org/10.1007/s11227-016-1788-6
[14] J. Yu, G. Khan, and F. Yuan, “XTEA encryption based novel RFID security protocol,” In 24th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 000058-000062, 2011, https://doi.org/10.1109/CCECE.2011.6030408
[15] G.N. Khan, X. Yu, and F. Yuan, “A novel XTEA based authentication protocol for RFID systems,” in URSI General Assembly and Scientific Symposium, pp. 1-4, 2011, https://doi.org/10.1109/URSIGASS.2011.6050584
[16] G.N. Khan and G. Zhu, “Secure RFID authentication protocol with key updating technique,” in 22nd International Conference on Computer Communication and Networks (ICCCN), pp. 1-5, 2013, https://doi.org/10.1109/ICCCN.2013.6614192
[17] G. Zhu and G. N. Khan, “Symmetric key based RFID authentication protocol with a secure key-updating scheme,” in 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-5, 2013, https://doi.org/10.1109/CCECE.2013.6567741
[18] G.N. Khan and M. Moessner, “Low-cost authentication protocol for passive, computation capable RFID tags,” Wireless Networks, Vol. 21, No. 2, pp. 565-580, 2015, https://doi.org/10.1007/s11276-014-0803-1
[19] S. Seshabhattar, S. K. Jagannatha, and D. W. Engels, “Security implementation within GEN2 protocol,” in IEEE International Conference on RFID-Technologies and Applications, pp. 402-407, 2011, https://doi.org/10.1109/RFID-TA.2011.6068669
[20] M. Saxena, R. N. Shaw, and J.K. Verma. “A Novel Hash-Based Mutual RFID Tag Authentication Protocol,” in Data and Communication Networks, pp. 1-12, 2019, https://doi.org/10.1007/978-981-13-2254-9_1
[21] K. Zang, H. Xu, F. Zhu, and P. Li, “Analysis and Design of Group RFID Tag Security Authentication Protocol,” in Conference on Complex, Intelligent, and Software Intensive Systems, Springer, Cham, pp. 637-645, 2019, https://doi.org/10.1007/978-3-030-22354-0_57
[22] F. Zhu, P. Li, H. Xu, and R. Wang, “A Lightweight RFID Mutual Authentication Protocol with PUF,” Sensor, Vol. 19, No. 13, pp. 2957, 2019, https://doi.org/10.3390/s19132957.
[23] R. Jain , K. G. Maradiab, “Comparative Analysis of SEA and XTEA for Resource Constrained Embedded Systems,” International Journal of Innovative and Emerging Research in Engineering, Vol. 3 No.4, pp. 78-82, 2016
[24] R. Anusha and V.V. D.Shastrimath “LCBC-XTEA: High Throughput Lightweight Cryptographic Block Cipher Model for Low-Cost RFID Systems,” in Computer Science On-line Conference, Springer, Cham, pp. 185-196, 2019, https://doi.org/10.1007/978-3-030-19813-8_20
Go to article

Authors and Affiliations

R. Anusha
1
V. Veena Devi Shastrimath
1

  1. Department of Electronics and Communication Engineering, N.M.A.M Institute of Technology, Visvesvaraya Technological University, Belagavi, Karnataka, India

This page uses 'cookies'. Learn more