Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Methane is an atmospheric trace gas, which is estimated to contribute about 20% to global warming. Coal mining used to be regarded as attributing considerably to the anthropogenic emissions of that potent greenhouse gas. Recently discovered methanotrophic abilities of coalbed rocks brought a new argument to the discussion about the environmental impact of the mining industry. In the present work, we determined the methanotrophic activity and maximum capacity (Vmaxl of methane oxidation originating from rocks surrounding seam 385/2 of the "Bogdanka" coal mine. Methane oxidation rates ranged from 0.23lμM CH4 g "day ·1 in the rock from the middle of the seam to 0.619 μM CH4 g "day ·1 in the bottom rock (4.4 m depth). Methanotrophic activity and Ymax increased with the distance to the coal body and with decreasing TOC content. Initial and terminal redox conditions (Eh>320 mV, pH 7.60-8.62) confirmed the oxic character of the methane oxidation process.
Go to article

Authors and Affiliations

Zofia Stępniewska
Anna Pytlak
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to enhance the productivity of a chilled beef production line by comparing two techniques; standard time calculation and simulation. The best improvement method was obtained using the work-study principle, a network diagram, and bottleneck identification. Two methods for improvement are proposed based on the ECRS, the Theory of Constraint (TOC), and line balancing concepts. A simulation model is developed to mimic the actual production line. The simulation results are verified, validated, and compared. Some workstations were combined, and the allocation of the workers was arranged. The present production line efficiency was 46.21%, which increased to 67.09% and 79.71% from the suggested methods. It showed that using the standard time calculation gives a different result from the simulation. In summary, the simulation model along with the application of TOC and ECRS, provides accurate information and improves overall productivity.
Go to article

Authors and Affiliations

Rendayu Jonda Neisyafitri
1
Pornthipa Ongkunaruk
2
Wisute Ongcunaruk
3

  1. Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
  2. Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Thailand
  3. Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The coastal regions of southwest India which falls in the tropical regime, have witnessed many transgression-regression events and climatic extremes in the Quaternary Period. A core, 15 m long, was recovered from the floodplains associated with a typical backwater body (lake) in the southwestern coast of India. The granulometric analysis proved dominance of sand and silt fractions and extremely high energy conditions over the entire core. The TOC/TN ratio indicated a domination of the C4-type over the C3-type plants in the lower half of the core, suggesting a warm climate. The C3-type plants prevail in the upper part of the core, thus reflecting cool and wet environments. Extremely low values of TOC/TN ratio (0.33% to 10%) of the core indicate short periods of very high rainfall events and the rapid influx of nutrients to the basin and the eutrophication of the basin. The presence of slightly brackish, brackish/marine and marine benthic foraminifers at 12.5–9 m depth indicates episodes of transgression and regression. The derived AMS radiocarbon dates suggest the Marine Isotope Stage 3 for the lower part of the core.
Go to article

Authors and Affiliations

Divya Murali
1
Rajesh Reghunath
1
Pranav Prakash
1
Ravi Bhushan
2
K. Anoop Krishnan
3
Sruthy Rose Baby
1

  1. Department of Geology, University of Kerala, Karyavattom Campus, Trivandrum, Kerala-695581, India
  2. Geosciences Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380009, Gujarat, India
  3. Biogeochemistry Group, National Centre for Earth Science Studies, Akkulam, Trivandrum, Kerala, India

This page uses 'cookies'. Learn more