Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 24
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Three plants extracts were used for biosynthesis of Ag nanoparticles (AgNPs). AgNPs nucleation process requires effective reduction agents which secure Ag+ to Ag0 reduction and also stabilizing/capping agents. The UV-vis and TEM observation revealed that the best results were obtained by R. officinalis leaf extract. The strong SPR band peak appeared at the wavelength 418 nm. Synthetized AgNPs were globular, fine (~20 nm), uniform and stabile throughout the experiment. A rapid rate of AgNPs synthesis was also significant and economically advantageous factor. Fine (10-20 nm) and globular nanoparticles were synthetized also by U. dioica leaf extract, but the stability of nanoparticles was not permanent. Despite V. vitis-idaea fruit extract contains a lot of reducing agents, UV-vis did not confirm the presence of AgNPs in solution. Synthetized Ag particles were very unstable, Ag particles agglomerated very fast and clearly indicated sediment was formed.

Go to article

Authors and Affiliations

O. Velgosová
A. Mražíková
L. Veselovský
J. Willner
A. Fornalczyk
Download PDF Download RIS Download Bibtex

Abstract

The new cast steel with a chemical composition of Fe-(0.85-0.95)C-(1.50-1.60)Si-(2.40-2.60)Mn-(1.0-1.2)Al-(0.30-0.40)­Mo-(0.10-0.15)V-(1.0-1.1)Ni (all in wt.%) was investigated in aspect of formation of the multiphase microstructure leading to high strength and ductility. Two types of heat treatment technologies were developed. The first one involves softening annealing at a temperature of 650°C for 4 hours, heating up to 950°C and holding for 2 hours, and then fast cooling down to 200°C and isothermally treated for 2 hours. The second one involves homogenizing annealing at 1100°C for 6 hours, then cooling with furnace down to 950°C and holding for 2 hours, then fast cooling down to 200°C and isothermally treated for 2 hours. A unique microstructure of cast steel consisting of martensite and retained austenite plates of various thicknesses and volume fractions was obtained. Additionally, nanometric transition carbides were noticed after the above-mentioned heat treatments. This microstructure ensures high hardness, strength and plasticity ( Rm = 1426 MPa and A = 9.5%), respectively, due to the fact that TWIP/TRIP processes occur during deformation related to the high volume fraction of retained austenite, which the stacking fault energy is above 15 mJ/m –2 resulting from the chemical composition of the investigated cast steel.
Go to article

Authors and Affiliations

P. Garbień
1 2
A. Kokosza
3
W. Maj
2
Ł. Rogal
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
K. Janus
1
A. Wójcik
1
ORCID: ORCID
Z. Żółkiewicz
2
Wojciech Maziarz
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059, Kraków, Poland
  2. Specodlew Sp. z o.o. Rotmistrza Witolda Pileckiego 3 Str., 32-050 Skawina, Poland
  3. AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A Cu-1Cr-0.1Zr alloy has been subjected to ECAP processing via route Bc and aging at 250-800°C. Electron BackScatter diffraction (EBSD), Transmission Electron Microscopy (TEM) and X-Ray Diffraction Line Profile Analysis (XRDLPA) techniques have been used to unveil some peculiarities of the grain and subgrain structure with a special emphasis on the comparison of the grain size estimated by the three techniques. For the alloy ECAP processed and aged up to 16 passes, the grain size (from EBSD, 0.2 < d < 5 μm), subgrain size (from TEM, d ~ 0.75 μm) and “apparent” average crystallite size (from XRDLPA, d < 0.25 μm) are manifestly different. The results were compared to the published data and analyzed based on the fundamental aspects of these techniques.
Go to article

Authors and Affiliations

K. Abib
1
ORCID: ORCID
B. Alili
1
ORCID: ORCID
T. Baudin
2
ORCID: ORCID
A.-L. Helbert
2
ORCID: ORCID
F. Brisset
2
ORCID: ORCID
L. Litynska-Dobrzynska
3
ORCID: ORCID
P. Zieba
3
ORCID: ORCID
D. Bradai
1
ORCID: ORCID

  1. University Of Sciences And Technology Houari Boumediene, Faculty Of Physics, Bp 32 El Alia, Bab Ezzouar, Algiers, Algeria
  2. University Paris-Saclay, Icmmo, 91405, Orsay, France
  3. Institute Of Meta llurgy And Mat erials Science, Polish Academy Of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present work, we performed the ultra-rapid annealing (URA) process for amorphous Fe78Ni8B14 melt-spun ribbons in order to obtain fine excellent microstructure assuring the best soft magnetic properties. Several microscopic methods mainly based on transmission electron microscopy (TEM) and Lorentz TEM (L-TEM) were applied for detailed studies of the microstructure and magnetic domains structure. The investigation revealed that the optimized parameters of the URA process (500°C/0.5-5 s) lead to outstanding soft magnetic properties. A mixture containing close to 50% amorphous phase and 50% α-Fe nanocrystals of size up to 30 nm has been already obtained after annealing for 3 s. These annealing conditions appear to be the most suitable in terms of microstructure providing the best magnetic properties.
Go to article

Authors and Affiliations

Wojciech Maziarz
1
ORCID: ORCID
A. Kolano-Burian
2
ORCID: ORCID
M. Kowalczyk
3
ORCID: ORCID
P. Błyskun
3
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID
A. Wójcik
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Lukasiewicz Research Network – institute of non-Ferrous Metals, 5 Generała Józefa Sowińskiego str., 44-121 Gliwice, Poland
  3. Warsaw University of Technology, the Faculty of Materials Science and Engineering, 141 Wołoska stR., 02-507 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Analytical transmission electron microscopy has been applied to characterize the microstructure, phase and chemical composition of the Ag–Al wear track throughout its thickness down to the atomic level. Microscopy findings have been correlated with Ag–Al film tribological properties to understand the effect of the hexagonal solid solution phase on the tribological properties of this film. Ag–25Al (at.%) films have been produced by simultaneous magnetron sputtering of components in Ar atmosphere under 1 mTorr pressure and subjected to pin-on-disc tribological tests. It has been shown that hcp phase with (001) planes aligned parallel to the film surface dominates both in as-deposited and in tribofilm areas of the Ag–Al alloy film. Possible mechanisms of reduced friction in easily oxidized Ag–Al system are discussed and the mechanism based on readily shearing basal planes of the hcp phase is considered as the most probable one.

Go to article

Authors and Affiliations

O. Kryshtal
A. Kruk
F. Mao
M. Taher
J. Jansson
A. Czyrska-Filemonowicz
Download PDF Download RIS Download Bibtex

Abstract

The results of structure observations of Ni base superalloy subjected to long-term influence of high pressure hydrogen atmosphere at 750K

and 850K are presented. The structure investigation were carried out using conventional light-, scanning- (SEM) and transmission electron

microscopy (TEM). The results presented here are supplementary to the mechanical studies given in part I of this investigations. The

results of study concerning mechanical properties degradation and structure observations show that the differences in mechanical

properties of alloy subjected different temperature are caused by more advanced processes of structure degradation during long-term aging

at 850K, compare to that at 750K. Higher service temperature leads to formation of large precipitates of δ phase. The nucleation and

growth of needle- and/or plate-like, relative large delta precipitates proceed probably at expense strengthening γ" phases. Moreover, it can't

be excluded that the least stable γ" phase is replaced with more stable γ' precipitates. TEM observations have disclosed differences in

dislocation structure of alloy aged at 750K and 850K. The dislocation observed in alloy subjected to 750K are were seldom observed only,

while in that serviced at high stress and 850K dislocation array and dislocation cell structure was typical.

Go to article

Authors and Affiliations

M. Kaczorowski
P. Skoczylas
A. Krzyńska
Download PDF Download RIS Download Bibtex

Abstract

Detailed studies on the effects of pulsed laser interference heating on surface characteristics and subsurface microstructure of amorphous Fe80Si11B9 alloy are reported. Laser interference heating, with relatively low pulsed laser energy (90 and 120 mJ), but with a variable number (from 50-500) of consecutive laser pulses permitted to get energy accumulation in heated areas. Such treatment allowed to form two- Dimensional micro-islands of laser-affected material periodically distributed in amorphous matrix. The crystallization process of amorphous FeSiB ribbons was studied by means of scanning and transmission electron microscopy. Detailed microstructural examination showed that the use of laser beam, resulted in development of nanostructure in the heated areas of the amorphous ribbon. The generation of nanocrystalline seed islands created by pulsed laser interference was observed. This key result may evidently give new knowledge concerning the differences in microstructure formed during the conventional and lased induced crystallization the amorphous alloys. Further experiments are needed to clarify the effect of pulsed laser interference crystallization on magnetic properties of these alloys.
Go to article

Authors and Affiliations

J. Morgiel
R. Ostrowski
J. Kusiński
O. Czyż
A. Radziszewska
M. Strzelec
C. Czyż
A. Rycyk
Download PDF Download RIS Download Bibtex

Abstract

Mechanical components and tools in modern industry are facing increasing performance requirements leading to the growing need for advanced materials and thus, for modern frictional systems. In the last decades, the Pulsed Laser Deposition (PLD) has emerged as an unique tool to grow high quality mono- as well as multilayers surfaces in metallic/ceramic systems. Building up a knowledge base of tribological properties of industrially-scaled, room temperature deposited PLD hard coatings are the most important step for the application of these coatings in engineering design. Although single-layer coatings find a range of applications, there are an increasing number of applications where the properties of a single material are not sufficient. One way to surmount this problem is to use a multilayer coating. Application of metallic interlayers improves adhesion of nitride hard layer in multilayer systems, which has been used in PVD processes for many years, however, the PLD technique gives new possibilities to produce system comprising many bilayers at room temperature. Tribological coatings consisted of 2, 4 and 16 bilayers of Cr/CrN and Ti/TiN type were fabricated with the Pulsed Laser Deposition (PLD) technique in the presented work. It is found in transmission electron examinations on thin foils prepared from cross-section that both nitride-based multilayer structures studied are characterized by small columnar crystallite sizes and high defect density, what might rise their hardness but compromise coating adhesion. The intermediate metallic layers contained larger sized and less defective columnar structure compared to the nitride layers, which should improve the coatings toughness. Switching from single layer to multi-layer metal/nitride composition improved resistance to delamination.

Go to article

Authors and Affiliations

J.M. Lackner
W. Waldhauser
L. Major
J. Morgiel
M. Kot
B. Major
Download PDF Download RIS Download Bibtex

Abstract

The scope of this work is to investigate the precipitation of two Al-Mg-Si alloys with and without Cu and excess Si by using the differential scanning calorimetry (DSC), transmission electron microscopic (TEM), Vickers hardness measurement and X-ray diffraction. The analysis of the DSC curves found that the excess Si accelerate the precipitation and the alloy contain the excess Si and small addition of copper has higher aging-hardness than that of free alloy (without excess Si and Cu) at the same heat treatment condition. The sufficient holding time for the precipitation of the β'' phase was estimated to be 6 hours for the alloy aged at 100°C and 10 hours for the alloy aged at 180°C. The low Copper containing Al-Mg-Si alloy gives rise to the forming a finer distribution of β (Mg2Si) precipitates which increases the hardness of the alloy. In order to know more about the precipitation reactions, concern the peaks on the DSC curve transmission electron microscopy observation were made on samples annealed at temperatures (250°C, 290°C and 400°C) just above the corresponding peaks of the three phases β'', β' and β respectively.

Go to article

Authors and Affiliations

Hanna Belghit
Hichem Farh
Toufik Ziar
Mosbah Zidani
Meryem Guemini
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effects of sodium chloride on the rheological properties of aqueous solutions of cocamidopropyl betaine (CAPB) and sodium dodecylbenzene sulfonate (SDBS) mixtures. Studies were carried out in the CAPB/SDBS molar ratio range of 0.95 to 3.5, at sodium chloride concentrations varying from 0.03 M to 0.75 M. Continuous and oscillatory flow measurements showed that the impact of sodium chloride concentration on shear viscosity and relaxation time was closely linked to the CAPB/SDBS molar ratio. The maximum shear viscosity and the longest Maxwell relaxation time were obtained at the CAPB/SDBS molar ratio of 2. Based on CryoTEM images, it was determined that the shear viscosity and relaxation time peaks identified at a certain concentration of sodium chloride could be attributed to the transition of the entangled wormlike micellar network into branched wormlike micelles. Changes in the micellar microstructure accompanying modifications of the CAPB/SDBS molar ratio and sodium chloride concentration were accounted for on the basis of the packing parameter.
Go to article

Authors and Affiliations

Sylwia Różańska
1
Ewelina Warmbier
1
Patrycja Wagner
1
Jacek Różański
1
ORCID: ORCID

  1. Poznan University of Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The state of the dislocation substructure of meteorite in which the history of phenomena accompanying the meteorite during its passage through the Earth’s atmosphere is recorded remains unused. The main goal of the presented work is a comprehensive analysis of the dislocation structure of the iron meteorite from the Morasko reserve (Poland, Wielkopolska Voivodeship) by TEM methods to determine the conditions and mechanism of its formation. The work is cognitive in the field of phenomena related to the destruction and deformation of the material in extreme conditions: space and terrestrial space. It can also be useful in the research on the creation of the material with specific mechanical properties, as well as a unique reference material for earth experiments with low-temperature deformation, high-speed deformation, recrystallization processes with short thermal pulses and structure relaxation in conditions of very long time periods.

Go to article

Authors and Affiliations

W. Osuch
R. Błoniarz
G. Michta
I. Suliga
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to compare the corrosion resistance of X37CrMoV5-l tool steel after nanostructurization and after a conventional heat treatment. The nanostructuring treatment consisted of austempering at 300°C, which produced a microstructure composed of nanometric carbide-free bainite separated by nanometric layers of retained austenite. The retained austenite occurred also in form of blocks which partially undergo martensitic transformation during final cooling. For comparison, a series of steel samples were subjected to a standard quenching and high tempering treatment, which produced a microstructure of tempered martensite. The obtained results showed that the corrosion resistance of steel after both variants of heat treatment is similar. The results indicate that the nanocrystalline structure with high density of intercrystalline boundaries do not deteriorate the corrosion resistance of steel, which depends to a greater extent on its phase composition.

Go to article

Authors and Affiliations

E. Skołek
J. Kamiński
S. Marciniak
W.A. Świątnicki
Download PDF Download RIS Download Bibtex

Abstract

Magnetic microstructure in the as suction cast Fe 69B 20Nb 2Hf 2Si 2Y 5 alloy was revealed by combined Lorentz-TEM and LM-STEM DPC analysis. The thin foil of the alloy was found to be composed primarily of the amorphous phase with few dendritic structures. Magnetic domains were found large in the µm range with an average domain wall width of 52 nm. The magnetic domain boundaries are easily mobile, what was confirmed by in situ applied magnetic field. The LM-STEM DPC complements the Lorentz-TEM analysis by providing details on the intensity and spatial distribution of the magnetization vector within the domains.
Go to article

Authors and Affiliations

P. Czaja
1
ORCID: ORCID

  1. The Aleksander Krupkowski Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Samples prepared using various additive manufacturing methods were compared in terms of structure, texture, transformation temperature and superelastic properties. Samples manufactured using laser engineered net shaping (LENS) method showed texture several degrees deviated from the <001> build direction, however with composition near to the initial powder composition, enabling superelastic effect. The electron beam additive manufacturing (EBAM) samples showed martensitic structure at room temperature due to a shift of transformation temperatures to the higher range. This shift occurs due to a lower Ni content resulting from different processing conditions. However, EBAM method produced sharper <001> texture in the build direction and made it possible to obtain a good superelastic effect above room temperature. Intermetallic particles of size 0.5-2 mm were identified as Ti2Ni phase using EDS and electron diffraction analyses. This phase was often formed at the grain boundaries. Contrary to the LENS method, the EBAM prepared samples showed Ni-rich primary particles resulted from different processing conditions that reduce the Ni content in the solid solution thus increase the martensitic transformation temperature. Ageing at 500°C allowed for shifting the martensitic transformation temperatures to the higher range in both, LENS and EBAM, samples. It resulted from the formation of Ni rich coherent precipitates. In samples prepared by both methods and aged at 500°C, the presence of martensite B19’ twins was observed mainly on {011} B19’ planes.
Go to article

Authors and Affiliations

J. Dutkiewicz
1
ORCID: ORCID
Ł. Rogal
1
ORCID: ORCID
M. Węglowski
2
ORCID: ORCID
T. Czujko
3
ORCID: ORCID
T. Durejko
3
ORCID: ORCID
E. Cesari
4
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, PAS, 25, Reymonta Str., 30-059 Krakow, Poland
  2. Łukasiewicz – Institute of Welding, Błogosławionego Czesława 16-18, 44-100 Gliwice, Poland
  3. Military University of Technology, 2, Institute of Materials Science and Engineering, Gen. S. Kaliskiego Str., 00-908, Warsaw, Poland
  4. University of Balearic Islands, Department of Physics, E07122, Palma de Mallorca, Spain
Download PDF Download RIS Download Bibtex

Abstract

Two single crystals with compositions Fe-Ni-Co-Al-Ta and Fe-Ni-Co-Al-Ta-B were selected and fabricated by Bridgman method. Subsequently, ingots were homogenized, oriented and subjected to a two-step heat treatment process in order to obtain fine and coherent γ' precipitates. Subsequently, superelastic cycling experiments were performed at 77 K. The next step included detailed microstructural characterization using transmission electron microscopy and high-energy synchrotron X-ray diffraction measurements together with Rietveld refinement. The results show that the number of fully reversible superelastic strains is very sensitive to the size of γ' precipitates. The smaller (3 nm) γ' precipitates ensured more superelastic response compared to material with larger γ' particles size (5 nm), in which the material did not receive its original shape after 10 cycles even after being heated.
Go to article

Authors and Affiliations

A. Wójcik
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
A. Szewczyk
1
ORCID: ORCID
J. Dutkiewicz
1
ORCID: ORCID
Wojciech Maziarz
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nanostructured, biocompatible, TiC/Ti Supersonic Cold Gas Sprayed coatings were deposited onto a Ti6Al4V alloy and their microstructure, wear resistance and hardness were investigated. The starting nanostructured powder, containing a varied mixture of Ti and TiC particles, was produced by high energy ball milling. Scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used for structural and chemical analyses of powder particles and coatings. Coatings, 250-350 μm thick, preserving the nanostructure and chemical powder composition, with low porosity and relatively high hardness (~850 HV), were obtained. These nanostructured TiC/Ti coatings exhibited better tribological properties than commonly used biomedical benchmark materials, due to an appropriate balance of hard and soft nano-phases.
Go to article

Authors and Affiliations

J. Kusiński
S. Kac
K. Kowalski
S. Dosta
E.P. Georgiou
J. Garcia-Forgas
P. Matteazzi
Download PDF Download RIS Download Bibtex

Abstract

In this work, the effect of heat transfer during explosive welding (EXW) and post-processing annealing on the microstructural and chemical composition changes have been thoroughly analysed using scanning and transmission electron microscopies and X-ray synchrotron radiation. Several combination of explosively welded metal compositions were studied: Ti with Al, Cu with Al, Ta or stainless steel, stainless steel with Zr or Ta and Ti with carbon steel. It was found that the melted metals exhibit a strong tendency to form brittle crystalline, nano-grained or even amorphous phases during the solidification. For all analysed metal combinations most of the phases formed in the zones of solidified melt do not appear in the equilibrium phase diagrams. Concurrently, the interfacial layers undergo severe plastic deformation forming nano-grained structures. It has been established that these heavily deformed areas can undergo dynamic recovery and recrystallization already during clad processing. This leads to the formation of new stress-free grains near the interface. In the case of low temperature and short time post processing annealing only the melted zones and severely deformed layers undergo recovery and recrystallization. However, drastic changes in the microstructure occurs at higher temperature and for longer annealing times. Applying such conditions leads to diffusion dominant processes across the interface. As a consequence continuous layers of intermetallic phases of equilibrium composition are obtained.

Go to article

Authors and Affiliations

H. Paul
M.M. Miszczyk
A. Gałka
R. Chulist
Z. Szulc
Download PDF Download RIS Download Bibtex

Abstract

This study illustrates the antifungal activity of green biosynthesis of a silver nanoparticle solution using one of Sinai’s natural plant extracts, namely Zygophyllum album which was used as a stabilizer and reducing agent to reduce Ag+ to metallic silver. In this study the plant extract was prepared by boiling in water for 10 min., 70% ethanol and wet autoclaving for 5 min. AgNPs were prepared using these three different extract methods. Transmission electron microscope (TEM) and zeta potential techniques were employed to characterize the synthesis of nanoparticles. The size of particles ranged from 6.28 nm to 28.89 nm at x100 and the zeta potential had one peak at –16.6 mean (mV) at area 100% for green synthesized AgNPs from Z. album prepared from boiling in water for 10 min. The size of particles ranged from 6.64 nm to 54.82nm at 100x and the zeta potential had one peak at – 12.9 mean (mV) at 100% area for green synthesized AgNPs from the plant ethanol extract. The size of particles ranged from 9.39 nm to 31.93 nm at 100x and the zeta potential had one peak – 19.8 mean (mV) at 100% area for green synthesized AgNPs from the wet autoclaved plant extract of Z. album for 5 min. All treatments of plant extract and AgNPs solutions, prepared from these plant extracts of Zygophyllum album, were compared with the positive control and Tachigaren – 30% W/P was conducted on the radial growth of F. oxysporium and caused antifungal activity with a high inhibition percent. There was a highly significant difference between the various extraction techniques. Increasing the concentration of treatments was accompanied with a significant effect on Fusarium wilt. Thus, this study may provide a good alternative approach to control Fusarium wilt disease in the field and under storage conditions of vegetables. Our study suggests that silver nanoparticles of plant extracts can be used for controlling Fusarium wilt.
Go to article

Authors and Affiliations

Monga Ibrahim Mossa
1
Eman E.S. El-Sharkawy
2
Ahmed A. ElSharawy
3

  1. Botany and Microbiology Department, Arish University, North Sinai, Egypt
  2. Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
  3. Plant Production Department, Faculty of Environmental Agricultural Science, Arish University, North Sinai, Egypt
Download PDF Download RIS Download Bibtex

Abstract

In this scientific publication, research results of two newly developed hot-rolled Fe-Mn-Al-C (X105) and Fe-Mn-Al-Nb-Ti-C (X98) types of steel were compared. These types of steel are characterized by an average density of 6.68 g/cm³, a value 15% lower compared to conventional structural steel. Hot rolling was carried out on a semi-industrial line to evaluate the effect of hot plastic deformation conditions with different cooling variants on the structure. The detailed analysis of phase composition as well as microstructure allows us to state that the investigated steel is characterized by an austenitic-ferritic structure with carbides precipitates. The results of the transmission electron microscopy (TEM) tests of both types of steel after hot rolling showed the occurrence of various deformation effects such as shear bands, micro bands, and lens twins in the microstructure. Based on the research undertaken with the use of transmission electron microscopy, it was found that the hardening mechanism of the X98 and X105 steel is deformation-induced plasticity by the formation of shear bands (SIP) and micro shear bands (MBIP).
Go to article

Bibliography

  1.  M. Bausch, G. Frommeyer, H. Hofmann, E. Balichev, M. Soler, M. Didier, and L. Samek, Ultra high-strength and ductile FeMnAlC light- weight steels, European Commission Research Fund for Coal and Steel; Final Report Grant Agreement RFSR-CT-2006-00027, 2013.
  2.  Y. Kimura, K. Hayashi, K. Handa, and Y. Mishima, “Microstructural control for strengthening the γ-Fe/E21–(Fe, Mn)3AlCx alloys,” Mater. Sci. Eng. A, vol. 329, no. 331, pp. 680‒685, 2002.
  3.  K. Eipper, G. Frommeyer, W. Fussnegger, and A.K.W. Gerick, High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof, U.S. Patent 20070125454A1, 2002.
  4.  L. Sozańska-Jędrasik, Structure and properties of newly developed TRIPLEX high-manganese steels (title in Polish: Struktura i własności nowoopracowanych stali wysokomanganowych typu TRIPLEX), PhD. Thesis, Silesian University of Technology, Gliwice, Poland 2020, [in Polish].
  5.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and K. Matus, ”Carbides analysis of the high strength and low density Fe-Mn-Al-Si steels,” Arch. Metall. Mater., vol. 63, no. 1, pp.  265‒276, 2018.
  6.  L. Sozańska-Jędrasik, J. Mazurkiewicz, K. Matus, and W. Borek, “Structure of Fe-Mn-Al-C Steels after Gleeble Simulations and Hot- Rolling,” Materials, vol. 13, no. 3, p. 739, 2020.
  7.  G. Frommeyer and U. Brüx, “Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels,” Steel Res. Int., vol. 77, no. 9‒10, pp. 627‒633, 2006.
  8.  M. Jabłońska, “Struktura i Właściwości Austenitycznej Stali Wysokomanganowej Umacnianej Wskutek Mechanicznego Bliźniakowania w Procesach Dynamicznej Deformacji,” Publishing house of the Silesian University of Technology (Wydawnictwo Politechniki Śląskiej), Gliwice, Poland, 2016, [in Polish].
  9.  S. Chen, R. Rana, A. Haldar and R.K. Ray, “Current state of Fe-Mn-Al-C low density steels,” Prog. Mater. Sci., vol.  89, pp. 345‒391, 2017.
  10.  A. Grajcar, “Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji,” STAL Metale & Nowe Technologie, vol.  7‒8, no. 10‒13, pp. 10‒13, 2013, [in Polish].
  11.  S.S. Sohn et al., “Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization,” Acta Mater., vol. 96, pp. 301‒310, 2015.
  12.  M.C. Ha, J.M. Koo, J.K. Lee, S.W. Hwang and K.T. Park, “Tensile deformation of a low density Fe–27Mn–12Al–0.8C duplex steel in association with ordered phases at ambient temperature,” Mater. Sci. Eng. A, vol. 586, pp. 276‒283, 2013.
  13.  U. Brüx, G. Frommeyer, and J. Jimenez, “Light-weight steels based on iron-aluminium – Influence of micro alloying elements (B, Ti, Nb) on microstructures, textures and mechanical properties,” Steel Res., vol. 73, no. 12, pp. 543‒548, 2002.
  14.  J.D. Yoo and K.T. Park, “Microband-induced plasticity in a high Mn–Al–C light steel,” Mater. Sci. Eng. A, vol. 496, no. 1‒2, pp. 417‒424, 2008.
  15.  J.D. Yoo, S.W. Hwang, and K.T. Park, “Origin of extended tensile ductility of a Fe-28Mn-10Al-1C steel,” Metall. Mater. Trans. A, vol. 40, no. 7, pp. 1520‒1523, 2009.
  16.  E. Welsch et al., “Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel,” Acta Mater., vol. 116, pp. 188‒199, 2016.
  17.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, “Influence of high strain rates on the structure and mechanical properties of high- manganes austenitic TWIP-type steel,” Materialwiss. Werkstofftech., vol. 47, no. 5‒6, pp. 428‒435, 2016.
  18.  L.A. Dobrzański, W. Borek, and J. Mazurkiewicz, „Mechanical properties of high-Mn austenitic steel tested under static and dynamic conditions,” Arch. Metall. Mater., vol. 61, no. 2, pp.  725‒730, 2016.
  19.  L. Sozańska-Jędrasik, J. Mazurkiewicz, W. Borek, and L.A. Dobrzański, “Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24‒11 steel of TRIPLEX type,” Inżynieria Materiałowa, vol. 2, no. 216, pp. 69‒76, 2017.
  20.  R. Ebner, P. Gruber, W. Ecker, O. Kolednik, M. Krobath, and G. Jesner, “Fatigue damage mechanisms and damage evolution near cyclically loaded edges,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 58, no. 2, pp. 267‒279, 2010.
  21.  W. Borek, T. Tanski, Z. Jonsta, P. Jonsta, and L. Cizek, “Structure and mechanical properties of high-Mn TWIP steel after their thermo- mechanical and heat treatments” in Proc. METAL 2015: 24th International Conference on Metallurgy and Materials, Brno, Czech Republic, 2015, pp. 307‒313.
  22.  M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr Mo/Cr-Mo-V,” Arch. Metall. Mater., vol. 61, no. 3, pp. 969‒974, 2016.
  23.  M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 4, pp. 737‒741, 2017.
  24.  T. Tomaszewski, P. Strzelecki, M. Wachowski, and M. Stopel, “Fatigue life prediction for acid-resistant steel plate under operating loads,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 913‒921, 2020.
  25.  A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, p. 2130, 2018.
  26.  L.A. Dobrzański and W. Borek, “Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels,” Mater. Sci. Forum, vol. 654‒656, no. 1‒3, pp. 266‒269, 2010.
  27.  M. Opiela, G. Fojt-Dymara, A. Grajcar, and W. Borek, “Effect of Grain Size on the Microstructure and Strain Hardening Behavior of Solution Heat-Treated Low-C High-Mn Steel,” Materials, vol. 13, no. 7, p. 1489, 2020.
  28.  L. Sozańska-Jędrasik, J. Mazurkiewicz, and W. Borek, “The influence of the applied type of cooling after eight-stage hot compression test on the structure and mechanical properties of TRIPLEX type steels,” MATEC Web Conf., vol. 252, p. 08005. 2019.
  29.  L. Sozanska-Jedrasik, J. Mazurkiewicz, W. Borek, K. Matus, B. Chmiela, and M. Zubko, “Effect of Nb and Ti micro-additives and thermo- mechanical treatment of high-manganese steel with aluminium and silicon on their microstructure and mechanical properties,” Arch. Metall. Mater., vol. 64, no. 1, pp. 133‒142, 2019.
Go to article

Authors and Affiliations

Liwia Sozańska-Jędrasik
1
Wojciech Borek
2
ORCID: ORCID
Janusz Mazurkiewicz
2

  1. Łukasiewicz Research Network–Institute for Ferrous Metallurgy, Department of Investigations of Properties and Structure of Materials, ul. K. Miarki 12-14, Gliwice 44-100, Poland
  2. Silesian University of Technology, Department of Engineering Materials and Biomaterials, ul. Konarskiego 18a, Gliwice 44-100, Poland
Download PDF Download RIS Download Bibtex

Abstract

The lack of room-temperature ductility of high-strength TiAl-based alloys called for complicated high temperature processing limiting their application areas. Introduction of additive manufacturing (AM) methods allowed to circumvent this disadvantage, but entailed microstructure refinement affecting, among the others, their oxidation resistance. The dry-air high temperature oxidation processing of TiAl-based alloys is relatively well covered for coarse grained materials, but to what extent the TiAl alloys are affected by the changes caused by the AM remains to be found out. Additionally, the role of nitrogen during these processes was to large extent omitted in previous works. Within the present experiment, the mould cast (MC) and the electron beam melted (EBM) Ti-48Al-2Nb-0.7Cr-0.3Si (at. %) RNT650 alloys were dry-air oxidized at 650°C for 1000 h. The TEM/EDS investigations allowed to confirm that the scale formed during such treatment consists of the layers occupied predominantly by TiO2+Al2O3/TiO2/Al2O3 sequence. Additionally, it was shown that N diffuses to the sub-scale and reacts with the substrate forming two distinct discontinuous sub-layers of α2-Ti3Al(N) and TiN. The scale over EBM was noticeably less porous and nitrogen penetration of the substrate was more extensive, while the MC showed higher susceptibility to local sub-scale oxidation.
Go to article

Authors and Affiliations

J. Morgiel
1
ORCID: ORCID
T. Dudziak
2
ORCID: ORCID
L. Maj
1
ORCID: ORCID
A. Kirchner
3
M. Pomorska
1
ORCID: ORCID
B. Klöden
3
T. Weissgärber
3
D. Toboła
2
ORCID: ORCID

  1. Polish Academy of Science, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059-Kraków, Poland
  2. Łukasiewicz Research Network, Kraków Institute of Technology, 73 Zakopianska Str, 30-418 Kraków, Poland
  3. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM, Institutsteil Dresden Winterbergstrasse 28, 01277 Dresden, Germany
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting (HDPC) allows to produce aluminum parts for car industry of complicated shapes in long series. Dies used in this process must be robust enough to withstand long term injection cycling with liquid aluminum alloys, as otherwise their defects are imprinted on the product making them unacceptable. It is expected that nitriding followed by coating deposition (duplex treatment) should protect them in best way and increase intervals between the cleaning/repairing operations. The present experiment covered investigations of the microstructure of the as nitride and deposited with CrAlN coating as well as its shape after foundry tests. The observations were performed with the scanning and transmission electron microscopy (SEM/TEM) method. They showed that the bottom part of this bi-layer is formed by roughly equi-axed Cr2N crystallites, while the upper one with the fine columnar (CrAl)N crystallites. This bi-layers were matched with a set of 7x nano-layers of CrN/(CrAl)N, while at the coating bottom a CrN buffer layer was placed. The foundry run for up to 19 500 cycles denuded most of coated area exposed to fast liquid flow (40 m/s) but left most of bottom part of the coating in the areas exposed to slower flow (7 m/s). The acquired data indicated that the main weakness of this coating was in its porosity present both at the columnar grain boundaries (upper layer) as well as at the bottom of droplets imbedded in it (both layers). They nucleate cracks propagating perpendicularly and the latter at an angle or even parallel to the substrate. The most crack resistant part of the coating turned-out the bottom layer built of roughly equiaxed fine Cr2N crystallites. Even application of this relatively simple duplex protection in the form of CrAlN coating deposited on the nitride substrate helped to extend the die run in the foundry by more than three times.
Go to article

Authors and Affiliations

A. Wilczek
1
J. Morgiel
2
ORCID: ORCID
A. Sypień
2
ORCID: ORCID
M. Pomorska
2
ORCID: ORCID
Ł. Rogal
2
ORCID: ORCID

  1. Limatherm S.A., Tarnowska Str. 1, 34-600 Limanowa , Poland
  2. Institute of Metallurgy and Materials Science Polish Academy of Science, 25 Reymonta Str., 30-059 Krakow, Poland

This page uses 'cookies'. Learn more