Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Climate change has been affecting plants over the last century and caused

changes in life history features such as the flowering time. Herbarium specimens provide

a snapshot of the past environmental conditions during their collection. The collection

date in a herbarium specimen is a good proxy to determine the flowering period (phenology).

In this study, phenological data from subarctic plant specimens collected over

100 years were gathered by using one of the largest herbarium databases in the World.

The collection dates of 7146 herbarium specimens were analyzed and significant shifts

in the phenology of subarctic plants were detected. In this study, most of the analyzed

142 species in a subarctic biogeographic region tended to flower earlier in the 1950–2018

period compared to the 1900–1949 as a possible result of the climate change. Flowering

time shifted from 8 to 26 days in some species. Changes in flowering time may

alter species interactions, community composition, and species distribution in a region.

Therefore, results of this study may shed light on the possible shifts in phenology and

plant responses under the climate change.

Go to article

Authors and Affiliations

Fazlioglu Fatih
Download PDF Download RIS Download Bibtex

Abstract

In polar regions, apart from tundra and glaciers, geothermally active areas

with elevated temperatures are important elements of ecosystems. One such geothermally

active region characterized by mosaic ecosystems and vast areas covered by recent lava

fields is Iceland. The aim of our study was to explore the diversity of invertebrates

inhabiting geothermally active lava fields in the Krafla area (Iceland). Eight bryophyte

samples were collected from a warm surface, mainly from the steaming areas. We have

found Nematoda, Rotifera, Tardigrada and Oribatida in the samples. Habitat analysis

demonstrated there to be 12 bryophyte species (five liverworts and seven mosses).

The diversity of bryophytes in a single sample ranged from one to six species. The

most common bryophyte was Racomitrium lanuginosum (Hedw.) Brid. Four species

of tardigrades were found, including one that was new. Pilatobius islandicus sp. nov.

is described herein by morphological, morphometric and molecular approaches (COI,

28S rRNA, 18S rRNA). Oribatida mites were identified as two species (Malaconothrus

monodactylus (Michael, 1888) and Camisia foveolata Hammer, 1955). The average density

of invertebrates was 13.1 ind./g with a maximum of 40.8 ind./g calculated per dry

material. The tardigrades found in our study belonged to herbivores, microbivores and

omnivores, whereas the mites belonged to saprophages, which indicates complex trophic

networks in geothermally active lava fields.

Go to article

Authors and Affiliations

Jakub Buda
Ziemowit Olszanowski
Mariusz Wierzgoń
Krzysztof Zawierucha
Download PDF Download RIS Download Bibtex

Abstract

In this article we investigate diatom assemblages in surface sediments of the subarctic Lake Imandra. We examine taxonomic composition and ecological structure and describe spatial variations of diatoms over the lake area. The diatom flora described here are characterized by abundance of planktonic centric species. The habitats of diatoms in the different stretches of Lake Imandra reflect local environmental conditions and are determined by the type and intensity of the anthropogenic impact. Stephanodiscus minutulus, S. alpinus, Aulacoseira islandica are the most abundant species in the area of the lake affected by industrial effluents and eutrophication, while Pantocsekiella comensis is most typical in the background sites of the lake. Diatoms’ taxonomic diversity is high in shallow bays where aquatic vegetation is common. Abundance of diatoms in areas affected by anthropogenic eutrophication reflects the high intensity of plankton primary production. Differences in the ecological structure of the diatom assemblages in different parts of Lake Imandra are caused by significant hydrochemical heterogeneity of the water quality.
Go to article

Bibliography

AGUSTÍ S., KRAUSE J.W., MARQUEZ I.A., WASSMANN P., KRISTIANSEN S. and DUARTE C.M. 2020. Arctic (Svalbard islands) active and exported diatom stocks and cell health status. Biogeosciences 17: 35–45.

BARINOVA S.S., MEDVEDEVA L.A. and ANISIMOVA O.V. 2006. Diversity of Algal indicators in Environmental Assessment. Pilies Studio, Tel Aviv (in Russian).

BATTARBEE R.W. 1986. Diatom analysis. In: B.E. Berglund (ed.) Handbook of Holocene palaeoecology and palaeohydrology. Wiley, Chichester: 527–570.

BATTARBEE R.W., JONES V., FLOWER R., CAMERON N., BENNION H., CARVALHO L. and JUGGINS S. 2001. Diatoms. In: J. Smol, H.J.B. Birks and M. Last (eds) Tracking environmental change using lake sediments. Vol. 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht, Kluwer: 155–202.

BERGER W.H. and PARKER F.L. 1970. Diversity of planktonic Foraminifera in deep-sea sediments. Science 168: 1345–1347.

BOROVICHOV YE.A., DENISOV D.B., KORNEYKOVA M.V., ISAEVA L.G., RAZUMOVSKAYA A.V., KHIMICH YU.R., MELEKHIN A.V. and KOSOVA A.L. 2018. Herbarium of INEP KSC RAS. Trudy Kolskogo Nauchnogo Tsentra RAN 9: 179–186 (in Russian).

CZEKANOWSKI J. 1909. Zur differential Diagnose der Neandertalgruppe. Korrespondenzblatt der deutschen Gesellschaft für Anthropologie, Ethnologie und Urgeschichte 40: 44–47.

DAUVALTER V.A., MOISEENKO T.I. and RODYUSHKIN I.V. 1999. Geochemistry of Rare Earth Elements in Imandra Lake, Murmansk Area. Geochemistry International 37: 325–331.

DAUVALTER V.A., MOISEENKO T.I., KUDRYAVTSEVA L.P. and SANDIMIROV S.S. 2000. Accumula-tion of heavy metals in Lake Imandra because of its pollution with industrial waste. Water Resources 27: 279–287.

DAUVALTER V.A. and DENISOV D.B. 2015. Sediments and Paleolimnology. Chapter 4: Evaluation and development of the lake monitoring network. In: J. Ylikörkkö, G.N. Christensen, N. Kashulin, D. Denisov, H.J. Andersen and E. Jelkänen (eds) Environmental Challenges in the Joint Border Area of Norway, Finland and Russia. Reports 41/2015. Centre for Economic Development, Transport and the Environment for Lapland, Finland: 116–131.

DAUVALTER V.A. and KASHULIN N.A. 2018. Mercury pollution of Lake Imandra Sediments, the Murmansk region, Russia. International Journal of Environmental Research 12: 939–953.

DAVYDOVA N.N. 1985. Diatoms-indicators of ecological conditions of reservoirs in the Holocene. Nauka, Leningrad (in Russian).

DENISOV D.B. 2007. Changes in the hydrochemical composition and diatomic flora of bottom sediments in the zone of influence of metal mining production (Kola Peninsula). Water Resources 34: 682–692.

DENISOV D.B. and KOSOVA A.L. 2017. Diversity of diatoms (Bacillariophyta) of Lake Imandra (Kola Peninsula). Proceedings of the scientific session, GI KSC RAS: 448–450 (in Russian).

DENISOV D.B. and GENKAL S.I. 2018. Centric diatom of Lake Imandra (Kola Peninsula, Russia). International Journal on Algae 20: 27–36.

DENISOV D.B., TERENTJEV P.M., VALKOVA S.A. and KUDRYAVTZEVA L.P. 2020. Small Lakes Ecosystems under the Impact of Non-Ferrous Metallurgy (Russia, Murmansk Region). Environments 7: 42–55.

DOLGONOSOV B.M. and MOISEENKO T.I. 2007. Modeling the succession of diatomic complex under growing industrial load on an aquatic ecosystem. Water Resources 34: 301–313.

GUIRY M.D. and GUIRY G.M. 2020. AlgaeBase, World-wide electronic publication. National University of Ireland, Galway.

JUSE A.P., PROSHKINA-LAVRENKO A.I. and SHESHUKOVA V.S. 1949. Diatomic analysis. 1. State publishing house of geological, Moscow – Leningrad (in Russian).

KAGAN L.YA. 2001. Human-induced changes in the diatom communities of Lake Imandra. Water Resources 28: 297–306.

KASHULIN N.A., DENISOV D.B., VALKOVA S.A., VANDYSH O.I. and TERENTIEV P.M. 2012. Current trends in freshwater ecosystems of the Euro-Arctic region. Proceedings of Kola Science Center RAS 1: 6–53 (in Russian).

KASHULIN N.A., DAUVALTER V.A., DENISOV D.B., VALKOVA S.A., VANDYSH O.I., TERENTJEV P.M. and KASHULIN A.N. 2017. Selected aspects of the current state of freshwater resources in the Murmansk region, Russia. Journal of Environmental Science and Health. Part A: Toxic/ Hazardous Substances and Environmental Engineering 52: 921–929.

KRAMMER T. and LANGE-BERTALOT H. 1986. Bacillariophyceae (Naviculaceae). 2(1). Süsswas-serflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1988. Bacillariophyceae (Bacillariaceae, Epithemiaceae, Surirellaceae). 2(2). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1991a. Bacillariophyceae (Centrales, Fragilariaceae, Eunotiaceae). 2(3). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER T. and LANGE-BERTALOT H. 1991b. Bacillariophyceae (Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolate) und Gomphonema Gesamtliteraturverzeichnis). 2(4). Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart.

KRAMMER K. 2000. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 1. The genus Pinnularia. A.R.G. Gantner Verlag K.G, Ruggell.

KRAMMER K. 2002. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 3. Cymbella. A.R.G. Gantner Verlag K.G, Ruggell.

KRAMMER K. 2003. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 4. Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis, Afrocymbella. A.R.G. Gantner Verlag K.G, Ruggell.

LANGE-BERTALOT H. 2001. Diatoms of Europe. Diatoms of the European Inland Waters and Comparable Habitats. Vol. 2. Navicula sensu stricto. 10 Genera Separated from Navicula sensu lato. Frustulia. A.R.G. Gantner Verlag K.G, Ruggell.

LUDIKOVA A.V. 2021. Long-term studies of surface-sediment diatom assemblages in assessing the ecological state of Lake Ladoga, the largest European Lake. Geography, Environment, Sustainability 14: 251–262.

MOISEENKO T.I., DAUVALTER V.A., LUKIN A.A., KUDRYAVTSEVA L.P., ILYASHCHUK B.P., ILYASHCHUK L.I., SANDIMIROV S.S., KAGAN L.YA., VANDYSH O.M., SHAROVA YU.N., KOROLEVA I.N. and SHAROV A.N. 2002. Anthropogenic changes in the ecosystem of the Lake Imandra. Nauka, Moscow (in Russian).

MOISEENKO T.I., GASHKINA N.A., SHAROV A.N., VANDYSH O.I. and KUDRYAVTSEVA L.P. 2009a. Anthropogenic transformations of the Arctic ecosystem of Lake Imandra: tendencies for recovery after a long period of pollution. Water Resources 36: 290–303.

MOISEENKO T.I., SHAROV A.N., VANDYSH O.I., KUDRYAVTSEVA L.P., GASHKINA N.A. and ROSE C. 2009b. Long-term modification of Arctic Lake ecosystems: Reference condition, degradation under toxic impacts and recovery (case study Imandra Lakes, Russia). Limno-logica 39: 1–13.

MOISEENKO T.I. and SHAROV A.N. 2010. The retrospective analysis of aquatic ecosystem modification of Russian large lakes under antropogenic impacts. Ecotoxicology around the Globe 12: 1–17.

MOISEENKO T.I. and SHAROV A.N. 2019. Large Russian Lakes Ladoga, Onega, and Imandra under strong pollution and in the period of revitalization: a review. Geosciences 9: 1–16.

NOVAKOVSKIY A.B. 2014. Presentation of the Module “Graphs” for Analyzing Geobotanical Data. Journal of Earth Science and Engineering 4: 88–93.

RAND M.C., GREENBERG A.E. and TARAS M. J. 1975. Standard method for examination of water and wastewater. American Water Works Association, Denver, CO, USA.

SANDIMIROV S.S., KUDRYAVCEVA L.P., DAUVALTER V.A., DENISOV D.B. and KOSOVA A.L. 2019. Methods of ecological research of Arctic water bodies. Izd. MSTU, Murmansk (in Russian).

SHAROV A.N. 2008. Phytoplankton as an indicator in estimating long-term changes in the water quality of large lakes. Water Resources 35: 668–663.

SHAROV A.N. and DENISOV D.B. 2021. Algae of Lakes in the European North of Russia. Chapter 7. In: O.S. Pokrovsky, Y. Bespalaya, L.S. Shirokova and T.Y. Vorobyeva (eds) Lake water: properties and uses (Case studies of Hydrochemistry and Hydrobiology of Lakes in Northwest Russia). Nova Science Publishers, New York: 153–191.

SHAV CHRAÏBI V.L., KIRETA A.R., REAVIE E.D., CAI M. and BROWN T.N. 2014. A paleolimno-logical assessment of human impacts on Lake Superior. Journal of Great Lakes Research 40: 886–897.

SKOGHEIM O.K. 1979. Rapport fra Arungenprosjectet. No 2. As-NLN, Oslo.

SÖRENSEN T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab. Biologiske Skrifter. 5: 1–34.

STOOF-LEICHSENRING K.R., PESTRYAKOVA L.A., EPP L.S. and HERZSCHUH U. 2020. Phylogenetic diversity and environment form assembly rules for Arctic diatom genera – a study on recent and ancient sedimentary DNA. Journal of Biogeography 47: 1166–1179.

VAN DAM H., MERTENS A. and SINKELDAM J. 1994. A coded checklist and ecological indicators values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28: 117–133.

WASHINGTON H.G. 1984. Diversity, biotic and similarity indices: a review with special relevance to aquatic ecosystems. Water Research 18: 653–694.
Go to article

Authors and Affiliations

Sofia Vokueva
1
ORCID: ORCID
Dmitrii Denisov
1
ORCID: ORCID

  1. Institute of the North Industrial Ecology Problems, Federal Research Center “Kola Science Center of RAS”, 8a Akademgorodok Street, 184209, Apatity, Murmansk region, Russia
Download PDF Download RIS Download Bibtex

Abstract

The avifaunistic observations carried out in the tundra valley of the Sob River's upper course (west slopes of the Polar Ural) in July 1995 revealed the occurrence of 39 breeding and 8 non-breeding bird species. The most numerous were Anthus pratensis, Calcarius lapponicus, Phylloscopus trochilus and Anthus cervinus. The great variety of wetland and aquatic habitats had a decisive influence on species-richness and abundance of birds (jointly 30 breeding and 4 non-breeding species). Areas of low humidity were inhabited by 14 whereas anthropogenic habitats by 4 species. Most of them (except for eurytopic A. pratensis and C. lapponicus) occupied one-two habitats irrespective of their numbers. The density of Buteo lagopus was estimated at 1.67-2.00 p/10 km2. Three species of distribution ranges laying to the south from the study area, namely Bucephala clangula, Dendrocopos major, Circus macrourus, were noted in the valley. The results obtained have been compared with available data on the avifauna of the region concerned.

Go to article

Authors and Affiliations

Andrzej Wuczyński
Grzegorz Hada-Jasikowski

This page uses 'cookies'. Learn more