Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Charakterystyką objęto 12 próbek zwałowanych odpadów serpentynitowych oraz 2 próbki gliniastego nadkładu. Próbki odpadów odznaczają się obojętnym i alkalicznym odczynem, bardzo wysoką zawartością przyswajalnego magnezu, natomiast bardzo niską - przyswajalnego fosforu i potasu. Spośród badanych metali ciężkich, chrom i nikiel występują w największych ilościach (odpowiednio do 760 i 4130 mg/kg), potencjalnie toksycznych dla roślin. W odpadach stwierdzono również występowanie azbestu chryzotylowego. Obecność azbestu oraz niekorzystne właściwości chemiczne powodują konieczność przykrycia odpadów serpentynitowych warstwą czwartorzędowych glin występujących w nadkładzie złoża. Warstwa taka zabezpieczy sąsiadujące tereny przed emisją ze zwałowisk oraz stworzy korzystniejsze warunki wegetacji roślinności wprowadzonej w trakcie rekultywacji.
Go to article

Authors and Affiliations

Cezary Kabała
Tomasz Szlachta
Download PDF Download RIS Download Bibtex

Abstract

Serpentine soils from 16 sample points in Serbia as well as the roots and shoots of eight Brassicaceae family species: Aethionema saxatile, Alyssum montanum, Alyssum repens, Cardamine plumieri, Erysimum linariifolium, Erysimum carniolicum, Isatis tinctoria, Rorippa lippizensis, were analyzed with regard to their concentrations of P, K, Fe, Ca, Mg, Ni, Zn, Mn, Cu, Cr, Cd, and Pb. Most of the soil samples were typical of ultramafic sites with low concentrations of P, K and Ca and high concentrations of Mg, Fe, Ni and Zn. Ca/Mg ratio was <1 in most soil samples and Brassicaceae plants. Only in A. montanum, A. repens, E. linariifolium and R. lippizensis was the Ca/Mg ratio >1. The levels of P, K, Fe and Zn were high, Mn and Cu occurred in low amounts, whereas Cr, Cd, Co and Pb were only traceable. In the roots and shoots of A. montanum and A. repens the measured concentrations of Ni were 657 mg kg-1 and 676 mg kg-1 respectively, which is the first instance that such high concentrations of Ni were detected in these two species.

Go to article

Authors and Affiliations

Gordana M. Tomović
Nevena Lj. Mihailović
Ahmed F. Tumi
Boško A. Gajić
Tomica D. Mišljenović
Marjan S. Niketić
Download PDF Download RIS Download Bibtex

Abstract

The numerical investigation of the mixing process in complex geometry micromixers, as a function of various inlet conditions and various micromixer vibrations, was performed. The examined devices were two-dimensional (2D) and three-dimensional (3D) types of serpentine micromixers with two inlets. Entering fluids were perturbed with a wide range of the frequency (0 - 50 Hz) of pulsations. Additionally, mixing fluids also entered in the same or opposite phase of pulsations. The performed numerical calculations were 3D to capture the proximity of all the walls, which has a substantial influence on microchannel flow. The geometry of the 3D type serpentine micromixer corresponded to the physically existing device, characterised by excellent mixing properties but also a challenging production process (Malecha et al., 2009). It was shown that low-frequency perturbations could improve the average mixing efficiency of the 2D micromixer by only about 2% and additionally led to a disadvantageously non-uniform mixture quality in time. It was also shown that high-frequency mixing could level these fluctuations and more significantly improve the mixing quality. In the second part of the paper a faster and simplified method of evaluation of mixing quality was introduced. This method was based on calculating the length of the contact interface between mixing fluids. It was used to evaluate the 2D type serpentine micromixer performance under various types of vibrations and under a wide range of vibration frequencies.

Go to article

Authors and Affiliations

Ziemowit M. Malecha
Karol Malecha
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a spring system symmetrically arranged around a circular plate compliant to out-of-plane oscillation is proposed. The spring system consists of single serpentine springs mutually coupled in a plane. Three theoretical mechanical models for evaluating the stiffness of the spring system are built, which are based on the flexural beam, Sigitta, and serpentine spring theories and equivalent mechanical spring structure models. The theoretically calculated results are in good agreement with numerical solutions using the finite element method, with errors less than 10% in the appropriate dimension ranges of the spring. Compared to similar spring structures without mechanical coupling, the proposed mechanically coupled spring shows advantage in suppressing the mode coupling.
Go to article

Bibliography

[1] X. Liu, K. Kim, and Y. Sun. A MEMS stage for 3-axis nanopositioning. Journal of Micromechanics and Microengineering, 17(9):1796–1802, 2007. doi: 10.1088/0960-1317/17/9/007.
[2] R. Legtenberg, A.W. Groeneveld, and M. Elwenspoek. Comb-drive actuators for large displacements. Journal of Micromechanics and Microengineering, 6(3):320–329, 1996. doi: 10.1088/0960-1317/6/3/004.
[3] S. Abe, M.H. Chu, T. Sasaki, and K. Hane. Time response of a microelectromechanical silicon photonic waveguide coupler switch. IEEE Photonics Technology Letters, 26(15):1553–1556, 2014. doi: 10.1109/lpt.2014.2329033.
[4] T.Q. Trinh, L.Q. Nguyen, D.V. Dao, H.M. Chu, and H.N. Vu, Design and analysis of a z-axis tuning fork gyroscope with guided-mechanical coupling. Microsystem Technologies, 20(2):281–289, 2014. doi: 10.1007/s00542-013-1947-0.
[5] Y.J. Huang, T.L. Chang, and H.P. Chou. Novel concept design for complementary metal oxide semiconductor capacitive z-direction accelerometer. Japanese Journal of Applied Physics, 48(7):076508, 2009. doi: 10.1143/jjap.48.076508.
[6] A. Sharaf and S. Sedky. Design and simulation of a high-performance Z-axis SOI-MEMS accelerometer. Microsystem Technologies, 19(8):1153–1163, 2013. doi: 10.1007/s00542-012-1714-7.
[7] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida. Three-axis SOI capacitive accelerometer with PLL C–V converter. Sensors and Actuators A: Physical, 75(1):77–85, 1999. doi: 10.1016/s0924-4247(98)00295-7.
[8] D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi. Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Transactions on Microwave Theory and Techniques, 51:259–270, 2003. doi: 10.1109/TMTT.2002.806514.
[9] Y. Liu. Stiffness Calculation of the microstructure with crab-leg flexural suspension. Advanced Materials Research, 317-319:1123–1126, 2011. doi: 10.4028/www.scientific.net/AMR.317-319.1123.
[10] H.M. Chou, M.J. Lin, and R. Chen. Investigation of mechanics properties of an awl-shaped serpentine microspring for in-plane displacement with low spring constant-to-layout area. Journal of Micro/Nanolithography MEMS and MOEMS, 15(3):035003, 2016. doi: 10.1117/1.JMM.15.3.035003.
[11] D.V. Hieu, L.V. Tam, N.V. Duong, N.D. Vy, and C.M. Hoang. Design and simulation analysis of a z axis microactuator with low mode cross-talk. Journal of Mechanics, 36(6):881–888, 2020. doi: 10.1017/jmech.2020.48.
[12] D.V. Hieu, L.V. Tam, K. Hane, and M.H. Chu. Design and simulation analysis of an integrated XYZ micro-stage for controlling displacement of scanning probe. Journal of Theoretical and Applied Mechanics, 59(1):143–156, 2021. doi: 10.15632/jtam-pl/130549.
[13] F. Hu, W. Wang, and J. Yao. An electrostatic MEMS spring actuator with large stroke and out-of-plane actuation. Micromechanics and Microengineering, 21(11):115029, 2011. doi: 10.1088/0960-1317/21/11/115029.
[14] W. Wai-Chi, A.A. Azid, and B.Y. Majlis. Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5):405–418, 2010.
[15] Y. Cao and Z. Xi. A review of MEMS inertial switches. Microsystem Technologies, 25(12):4405–4425, 2019. doi: 10.1007/s00542-019-04393-4.
[16] K.R. Sudha, K. Uttara, P.C. Roshan, and G.K. Vikas. Design and analysis of serpentine based MEMS accelerometer. AIP Conference Proceedings, 1966:020026, 2018. doi: 10.1063/1.5038705.
[17] H.M. Chou, M.J. Lin, and R. Chen. Fabrication and analysis of awlshaped serpentine microsprings for large out-of-plane displacement. Journal of Micromechanics and Microengineering, 25:095018, 2015. doi: 10.1088/0960-1317/25/9/095018.
[18] C.M. Hoang, and K. Hane. Design fabrication and vacuum operation characteristics of two-dimensional comb-drive micro-scanner. Sensors and Actuators A: Physical, 165(2): 422–430, 2011. doi: 10.1016/j.sna.2010.11.004.
[19] G. Barillaro, A. Molfese, A. Nannini, and F. Pieri. Analysis simulation and relative performances of two kinds of serpentine springs. Journal of Micromechanics and Microengineering, 15(4):736–746, 2005. doi: 10.1088/0960-1317/15/4/010.
[20] P.B. Chu, I. Brener, C. Pu, S.S. Lee, J.I. Dadap, S. Park, K.Bergman et al. Design and nonlinear servo control of MEMS mirrors and their performance in a large port-count optical switch. Journal of Microelectromechanical Systems, 14(2):261–273, 2005. doi: 10.1109/JMEMS.2004.839827.
[21] G.D.J. Su, S.H. Hung, D. Jia, and F. Jiang. Serpentine Spring corner designs for micro-electro-mechanical systems optical switches with large mirror mass. Optical Review, 12(4):339–344, 2005. doi: 10.1007/s10043-005-0339-9.
[22] A. Khlifi, A. Ahmed, S. Pandit, B. Mezghani, R. Patkar, P. Dixit, and M.S. Baghini. Experimental and theoretical dynamic investigation of MEMS Polymer mass-spring systems. IEEE Sensors Journal, 20(19):11191–11203, 2020. doi: 10.1109/JSEN.2020.2996802.
[23] J. Wu, T. Liu, K. Wang, and K. Sørby. A measuring method for micro force based on MEMS planar torsional spring. Measurement Science and Technology, 32(3):035002, 2020. doi: 10.1088/1361-6501/ab9acd.
[24] Z. Rahimi, J. Yazdani, H. Hatami, W. Sumelka, D. Baleanu, and S. Najafi. Determination of hazardous metal ions in the water with resonant MEMS biosensor frequency shift – concept and preliminary theoretical analysis. Bulletin of the Polish Academy of Sciences: Technical Sciences, 68(3): 529–537, 2020. doi: 10.24425/bpasts.2020.133381.
[25] K.G. Sravani, D. Prathyusha, C. Gopichand, S.M. Maturi, A. Elsinawi, K. Guha, and K. S. Rao. Design, simulation and analysis of RF MEMS capacitive shunt switches with high isolation and low pull-in-voltage. Microsystem Technologies, 28:913–928, 2022. doi: 10.1007/s00542-020-05021-2.
[26] N. Lobontiu and E. Garcia. Mechanics of Microelectromechanical Systems. Kluwer Academic Publishers, 2005. doi: 10.1007/b100026.
[27] H.A. Rouabah, C.O. Gollasch, and M. Kraft. Design optimisation of an electrostatic MEMS actuator with low spring constant for an “Atom Chip”. In Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, volume 3, pages 489–492, 2002.
[28] R. Raymond and J. Raymond. Roark's Formulas for Stress and Strain. McGraw-Hill, 1989.
[29] M.S. Weinberg and A. Kourepenis. Error sources in in-plane silicon tuning-fork MEMS gyroscopes. Journal of Microelectromechanical Systems, 15(3):479–491, 2006. doi: 10.1109/jmems.2006.876779.
Go to article

Authors and Affiliations

Duong Van Nguyen
1 2
ORCID: ORCID
Chien Quoc Nguyen
1
ORCID: ORCID
Hieu Van Dang
2
ORCID: ORCID
Hoang Manh Chu
1
ORCID: ORCID

  1. International Training Institute for Materials Science, Hanoi University of Science and Technology, Vietnam
  2. FPT University, Hanoi, Vietnam
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the ecological characteristics of vascular plants colonizing serpentine mining waste dumps and quarries in Lower Silesia. The investigated flora was analyzed with regard to species composition, geographical-historical status, life forms, as well as selected ecological factors, such as light and trophic preferences, soil moisture and reaction, value of resistance to increased heavy metals content in the soil, seed dispersal modes and occurrence of mycorrhiza. There were 113 species of vascular plants, belonging to 28 families, found on seven sites in the study. The most numerous families were Asteraceae, Poaceae, Fabaceae and Caryophyllaceae. Only 13% of all plants recorded occurred on at least five of the study sites. The most numerous were species related to dry grassland communities, particularly of the Festuco-Brometea class, which included taxa endangered in the region of Lower Silesia: Avenula pratensis, Salvia pratensis, Festuca valesiaca. Apophytes dominated in the flora of the investigated communities. Hemicryptophytes were the most numerous group and therophytes were also abundant. The serpentine mining waste dumps and querries hosted heliophilous species which prefer mesic or dry habitats moderately poor in nutrients, featuring neutral soil reaction. On two study sites 30% of the flora composition consisted of species that tolerate an increased content of heavy metals in the soil. Anemochoric species were the most numerous with regard to types of seed dispersal. Species with an arbuscular type of mycorrhiza were definitely dominant in the flora of all the study sites, however, the number of nonmycorrhizal species was also relatively high. It was suggested that both the specific characteristics of the habitats from serpentine mining and the vegetation of adjacent areas had a major impact on the flora composition of the communities in the investigated sites.

Go to article

Authors and Affiliations

Dorota Kasowska
Anna Koszelnik-Leszek

This page uses 'cookies'. Learn more