Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Raman spectrometers are devices which enable fast and non-contact identification of examined chemicals. These devices utilize the Raman phenomenon to identify unknown and often illicit chemicals (e.g. drugs, explosives) without the necessity of their preparation. Now, Raman devices can be portable and therefore can be more widely used to improve security at public places. Unfortunately, Raman spectra measurements is a challenge due to noise and interferences present outside the laboratories. The design of a portable Raman spectrometer developed at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology is presented. The paper outlines sources of interferences present in Raman spectra measurements and signal processing techniques required to reduce their influence (e.g. background removal, spectra smoothing). Finally, the selected algorithms for automated chemicals classification are presented. The algorithms compare the measured Raman spectra with a reference spectra library to identify the sample. Detection efficiency of these algorithms is discussed and directions of further research are outlined.

Go to article

Authors and Affiliations

Paweł Wierzba
Andrzej Kwiatkowski
Janusz Smulko
Marcin Gnyba
Download PDF Download RIS Download Bibtex

Abstract

Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

Go to article

Authors and Affiliations

M.A. Malik
K.N. Braszczyńska-Malik
K. Majchrzak
Download PDF Download RIS Download Bibtex

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.

Go to article

Authors and Affiliations

Maciej J. Głowacki
Marcin Gnyba
Paulina Strąkowska
Mateusz Gardas
Maciej Kraszewski
Michał Trojanowski
Marcin R. Strąkowski
Download PDF Download RIS Download Bibtex

Abstract

The technique of electrospinning was employed to fabricate uniform one-dimensional inorganic-organic composite nanofibers at room temperature from a solution containing equal volumes of aluminum 2, 4-pentanedionate in acetone and polyvinylpyrrolidone in ethanol. Upon firing and sintering under carefully pre-selected time-temperature profiles (heating rate, temperature and soak time), high-purity and crystalline alumina nanofibers retaining the original morphological features present in the as-spun composite (cermer) fibers were obtained. Tools such as laser Raman spectroscopy, scanning and transmission electron microscopy together with energy dispersive spectroscopy and selected area electron diffraction were employed to follow

the systematic evolution of the ceramic phase and its morphological features in the as-spun and the fired fibers. X-ray diffraction was used to identify the crystalline fate of the final product.

Go to article

Authors and Affiliations

A.-M. Azad
M. Noibi
M. Ramachandran
Download PDF Download RIS Download Bibtex

Abstract

A problem is defined to investigate the effect of titanium traces on the corrosion behaviour of low carbon steel. In theory titanium effects surface properties like abrasion resistance in medium carbon steels and corrosion resistance in low as well as medium carbon steels. The present research as indicated by the topic is aimed to experimentally mark the effect of titanium traces on corrosion resistance in the available low carbon steel specimens.
The effect of microalloying with titanium (i.e.0.02wt.%) on the corrosion behavior of low carbon steel in a 3.5 wt.% NaCl solution was studied by electrochemical, SEM, and Raman spectroscopy techniques. The electrochemical results showed that the corrosion of the Ti-bearing steel improved by around 30% compared with the Ti-free steel. The titanium microalloying led to the formation of a more compact corrosion product layer on the metal surface. The SEM analysis showed that the Ti-bearing sample had a smoother surface compared with the Ti-free steel.
Go to article

Bibliography

[1] Yu, C., Wang, H., Gao, X. & Wang, H. (2020). Effect of Ti Microalloying on the Corrosion Behavior of Low-Carbon Steel in H2S/CO2 Environment. Journal of Materials Engineering and Performance. 29(9), 6118-6129. DOI: 10.1007/s11665-020-05077-1.
[2] Liu, Z., Gao, X., Du, L., Li, J., Zheng, C. & Wang, X. (2018). Corrosion mechanism of low-alloy steel used for flexible pipe in vapor-saturated H2S/CO2 and H2S/CO2-saturated brine conditions. Materials and Corrosion 69(9), 1180-1195. DOI: 10.1002/maco.201810047.
[3] Palumbo, G., Banaś, J., Bałkowiec, A., Mizera, J. & Lelek-Borkowska, U. (2014). Electrochemical study of the corrosion behaviour of carbon steel in fracturing fluid. J. Solid State Electrochem. 18(11), 2933-2945. DOI: 10.1007/s10008-014-2430-2.
[4] Liu, Z.-G., Gao, X.-H., Du, L.-X., Li, J.-P., Li, P. & Misra, R.D.K. (2017). Comparison of corrosion behaviors of low-alloy steel exposed to vapor-saturated H2S/CO2 and H2S/CO2-saturated brine environments. Materials and Corrosion 68(5), 566-579. https://doi.org/10.1002/maco.201609165.
[5] Rozenfeld, I.L. (1981). Corrosion Inhibitors. New York: McGraw-Hill.
[6] Palumbo, G., Kollbek, K., Wirecka, R., Bernasik, A. & Górny, M. (2020). Effect of CO2 partial pressure on the corrosion inhibition of N80 carbon steel by gum arabic in a CO2-water saline environment for shale oil and gas industry. Materials. 13(19), 4245, 1-24. https://doi.org/10.3390/ma13194245.
[7] Bai, H., Wang, Y., Ma, Y., Zhang, Q., Zhang, N. (2018). Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials. 11(9), 1765, 1-15. DOI: 10.3390/ma11091765.
[8] Cui, L., Kang, W., You, H., Cheng, J., & Li, Z. (2021). Experimental study on corrosion of J55 casing steel and N80 tubing steel in high pressure and high temperature solution containing CO2 and NaCl. Journal of Bio- and Tribo-Corrosion. 7(1), 13, 1-14. DOI: 10.1007/s40735-020-00449-5.
[9] Islam, M.A., & Farhat, Z.N. (2015). Characterization of the corrosion layer on pipeline steel in sweet environment. Journal of Materials Engineering and Performance. 24(8), 3142-3158. DOI: 10.1007/s11665-015-1564-4.
[10] Zhang, T., Liu, W., Yin, Z., Dong, B., Zhao, Y., Fan, Y., Wu, J., Zhang, Z. & Li, X. (2020). Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments. Journal of Materials Engineering and Performance. 29(4), 2531-2541. DOI: 10.1007/s11665-020-04738-5.
[11] Weng, L., Du, L. & Wu, H. (2018). Corrosion behaviour of weathering steel with high-content titanium exposed to simulated marine environment. International Journal of Electrochemical Science. 13(6), 5888-5903. DOI: 10.20964/2018.06.61.
[12] Marcus, P. (1994). On some fundamental factors in the effect of alloying elements on passivation of alloys. Corrosion Science. 36(12), 2155-2158. https://doi.org/10.1016/0010-938X(94)90013-2.
[13] Liu, Z., Gao, X., Du, L., Li, J., Li, P. (2016). Corrosion Behaviour of Low-Alloy Steel with Titanium Addition Exposed to Seawater Environment. International Journal Electrochemical Science. 11(8), 6540-6551. DOI: 10.20964/2016.08.25.
[14] Banas, J., Lelek-Borkowska, U., Mazurkiewicz, B. & Solarski, W. (2007). Effect of CO2 and H2S on the composition and stability of passive film on iron alloys in geothermal water. Electrochim. Acta 52(18), 5704-5714. DOI: 10.1016/j.electacta.2007.01.086.
[15] Palumbo, G., Dunikowski, D., Wirecka, R., Mazur, T., Lelek-Borkowska, U., Wawer, K. & Banaś, J. (2021). Effect of Grain Size on the Corrosion Behavior of Fe-3wt.%Si-1wt.%Al Electrical Steels in Pure Water Saturated with CO2. Materials. 14(17), 5084, 1-19. https://doi.org/10.3390/ma14175084.
[16] Święch, D., Palumbo, G., Piergies, N., Pięta, E., Szkudlarek, A. & Paluszkiewicz, C. (2021). Spectroscopic investigations of 316L stainless steel under simulated inflammatory conditions for implant applications: the effect of tryptophan as corrosion inhibitor/hydrophobicity marker. Coatings. 11(9), 1097. https://doi.org/10.3390/coatings11091097.
[17] Święch, D., Paluszkiewicz, C., Piergies, N., Pięta, E., Kollbek, K. & Kwiatek, W.M. (2020). Micro- and nanoscale spectroscopic investigations of threonine influence on the corrosion process of the modified Fe surface by Cu nanoparticles. Materials. 13(20), 4482, 1-16. https://doi.org/10.3390/ma13204482.
[18] Chen, Z. & Yan, K. (2020). Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Scientific Reports. 10(1), 16591, 1-8. https://doi.org/10.1038/s41598-020-73799-2.
[19] Kalisz, D. & Żak, P.L. (2015). Modeling of solute segregation and the formation of non-metallic inclusions during solidification of a titanium-containing steel. Kovove Materialy. 53(1), 35-41. DOI: 10.4149/km_2015_1_35.
[20] Podorska, D., Drozdz, P., Falkus, J. & Wypartowicz, J. (2006). Calculations of oxide inclusions composition in the steel deoxidized with Mn, Si and Ti. Archives of Metallurgy and Materials. 51(4), 581-586. ISSN: 1733-3490.
[21] Zhang, M., Li, M., Wang, S., Chi, J., Ren, L., Fang, M. & Zhou, C. (2020). Enhanced wear resistance and new insight into microstructure evolution of in-situ (Ti,Nb)C reinforced 316 L stainless steel matrix prepared via laser cladding. Optics and Lasers in Engineering. 128, 106043, 1-10. DOI: 10.1016/j.optlaseng.2020.106043.
[22] Sadeghpour, S., Kermanpur, A. & Najafizadeh, A. (2013). Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment. Materials Science and Engineering: A. 584, 177-183. DOI: 10.1016/j.msea.2013.07.014.
[23] Zhang, L.M., Ma, A.L., Hu, H.X.; Zheng, Y.G., Yang, B.J. & Wang, J.Q. (2017). Effect of microalloying with Ti or Cr on the corrosion behavior of Al-Ni-Y amorphous alloys. Corrosion. 74(1), 66-74. https://doi.org/10.5006/2451.
[24] Mustafa, A.H., Ari-Wahjoedi, B. & Ismail, M.C. (2013). Inhibition of CO2 corrosion of X52 steel by imidazoline-based inhibitor in high pressure CO2-water environment. Journal of Materials Engineering and Performance. 22(6), 1748-1755. DOI: 10.1007/s11665-012-0443-5.
[25] Nie, X.P., Yang, X.H. & Jiang, J.Z. (2009) Ti microalloying effect on corrosion resistance and thermal stability of CuZr-based bulk metallic glasses. Journal of Alloys Compounds. 481(1), 498-502. DOI: 10.1016/j.jallcom.2009.03.022.
[26] Palumbo, G., Górny, M. & Banaś, J. (2019). Corrosion inhibition of pipeline carbon steel (N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a possible environmentally friendly corrosion inhibitor for shale gas industry. Journal of Materials Engineering and Performance. 28(10), 6458-6470. https://doi.org/10.1007/s11665-019-04379-3.
[27] Heuer, J.K. & Stubbins, J.F. (1999). An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 41(7), 1231-1243. https://doi.org/10.1016/S0010-938X(98)00180-2.
[28] Mora-Mendoza, J.L., Turgoose, S. (2002) Fe3C influence on the corrosion rate of mild steel in aqueous CO2 systems under turbulent flow conditions. Corrosion Science. 44(6), 1223-1246. DOI: 10.1016/S0010-938X(01)00141-X.
[29] Criado, M., Martínez-Ramirez, S. & Bastidas, J.M. (2015). A Raman spectroscopy study of steel corrosion products in activated fly ash mortar containing chlorides. Construction and Building Materials. 96, 383-390. http://dx.doi.org/10.1016/j.conbuildmat.2015.08.034.
[30] Zhang, X., Xiao, K., Dong, C., Wu, J., Li, X. & Huang, Y. (2011). In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl− and SO42. Engineering Failure Analysis. 18(8), 1981-1989. DOI: 10.1016/j.engfailanal.2011.03.007.
[31] Święch, D., Paluszkiewicz, C., Piergies, N., Lelek-Borkowska, U. & Kwiatek, W.M. (2018). Identification of corrosion products on Fe and Cu metals using spectroscopic methods. Acta Physica Polonica Series A. 133(4), 286-288. DOI: 10.12693/APhysPolA.133.286.

Go to article

Authors and Affiliations

Ali R. Sheikh
1
ORCID: ORCID

  1. AGH University of Science and Technology, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The sodium expansion and creep strain of semi-graphitic cathodes are investigated using a modified Rapoport apparatus. To further understanding of the sodium and bath penetration damage processes, the impact of external stress fluence on the carbon cathode microstructure has been defined with XRD analysis, Raman spectroscopy and scanning electron microscope (SEM). Graphite atoms fracture into smaller fragments that are less directional than the pristine platelets, which allows for a possible filling of the cracks that thus develop by the sodium and bath during aluminum electrolysis. The average microcrystalline size (calculated by Raman spectroscopy) is reduced by the deformation. The decreased intensity and widened ‘G’ and ‘D’ peaks in the analysis indicate the poor order of the sheets along the stacking direction while the consistent layered graphite structure is sustained.

Go to article

Authors and Affiliations

Wei Wang
ORCID: ORCID
Weijie Chen
Download PDF Download RIS Download Bibtex

Abstract

ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573–873 K. Photoluminescence was carried out in the temperature range of 20–300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.

Go to article

Authors and Affiliations

M. Sypniewska
R. Szczesny
P. Popielarski
ORCID: ORCID
K. Strzalkowski
B. Derkowska-Zielinska
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of an examination performed on a set of samples of glass-epoxy core rods used in composite insulators with silicone rubber housings. The goal of the examination was to test the aging resistance of the core material when exposed to Direct Current (DC) high voltage. Long term exposure of a glass-epoxy core rod to DC high voltage may lead to the gradual degradation of its mechanical properties due to the ion migrations. Electrolysis of the core material (glass fiber) may cause electrical breakdown of the insulators and consequently lead to a major failure. After being aged for 6000 hours under DC high voltage, the samples were subjected to microscopic analysis. Their chemical composition was also examined using Raman spectroscopy and their dielectric losses and conductance in the broad range of frequencies were tested using dielectric spectroscopy.

Go to article

Authors and Affiliations

K. Wieczorek
M. Jaroszewski
P. Ranachowski
Z. Ranachowski
Download PDF Download RIS Download Bibtex

Abstract

Raman spectroscopy and vitrinite reflectance measurements of dispersed organic matter from Carboniferous shales in boreholes in the northern part of the Intra-Sudetic Basin were used for thermal history reconstruction. Microscopic investigations have shown that the organic matter is dominated by the vitrinite maceral group. In analysed samples, organic matter shows a varied degree of thermal alteration determined by the mean random vitrinite reflectance (VRo) ranging from 0.72% to 3.80%. Mean apparent maximum vitrinite reflectance (R’max) values reached 4.98%. The full width at half maximum of D1 and G bands in Raman spectra are well-correlated with mean VRo and R’max. Thermal maturity in the boreholes shows a regular increase with depth. Geological data combined with Raman spectroscopy and mean vitrinite reflectance results indicate that the analysed Carboniferous strata reached maximum paleotemperatures from c. 110 to c. 265°C. The regional paleogeothermal gradient in the late Paleozoic was c. 80°C/km. The Variscan heating event presumably caused a major coalification process of organic matter. The Carboniferous–Permian magmatic activity must have contributed to high heat flow, adding to the effect of sedimentary burial on the thermal maturity.

Go to article

Authors and Affiliations

Dariusz Botor
Tomasz Toboła
Marta Waliczek
Download PDF Download RIS Download Bibtex

Abstract

The structural, morphological and photoluminescent properties of thermally evaporated neodymium oxide (Nd2O3) thin films deposited onto nanostructured silicon (Si-ns) are reported. Si-ns embedded in silicon nitride (SiN) thin films are prepared by plasma-enhanced chemical vapour deposition (PECVD). SiN and Nd2O3 thin films uniformity and Si-ns formation are confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of neodymium (Nd), silicon (Si), oxygen (O), and phosphorus (P) is investigated by energy-dispersive spectroscopy (EDS) and secondary ion mass spectrometry (SIMS). Post-annealing SIMS profile indicates an improvement of the homogeneity of activated P distribution in Si bulk. The X-ray diffraction (XRD) combined with Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR) have been employed to determine amorphous silicon (a-Si), crystalline silicon (c-Si), Nd2O3 and SiN phases present in the Nd2O3-SiN bilayers with their corresponding chemical bonds. After annealing, a Raman shift toward lower wavenumbers is recorded for the Si peak. XPS data reveal the formation of Nd2O3 thin films with Nd-O bonding incorporating trivalent Nd ions (Nd3+). Strong room-temperature photoluminescence is recorded in the visible light range from the Si-ns. Nd-related photoluminescent emission in the near infrared (NIR) range is observed at wavelengths of 1025–1031 nm and 1083 nm, and hence is expected to improve light harvesting of Si-based photovoltaic devices.
Go to article

Authors and Affiliations

Amine Mefoued
1 2
ORCID: ORCID
Bedra Mahmoudi
1
Nasser Benrekaa
2
Faiza Tiour
1
Hamid Menari
1
Abdelyamine Naitbouda
3
Amar Manseri
1
Afaf Brik
1
Salah Mezghiche
1
Moustafa Debbab
4

  1. Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger–7 merveilles, 16027 Algiers, Algeria
  2. Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 Bab-Ezzouar, 16111 Algiers, Algeria
  3. Centre de Développement des Technologies Avancées (CDTA), Cité 20 août 1956, 16081 Algiers, Algeria
  4. Université Abou Bekr Belkaid BP 230, 13000 Chetouane, Tlemcen, Algeria
Download PDF Download RIS Download Bibtex

Abstract

In this paper cation arrangement in two samples of aluminoceladonite, emerald‑green and dark-green were studied by Mössbauer, Raman and X-ray photoelectron spectroscopies. The X-ray photoelectron spectroscopy (XPS) spectra obtained in the region of the Si2p, Al2p, Fe2p, K2p, and O1s core levels provided information, for the first time highlighting a route to identify the position of Si, Al, K, and Fe cations in a structure of layered silicates. The XPS analysis showed the presence of Al in tetrahedral and octahedral coordination while the K2p line indicated the possibility of K+ substitution by other cations in interlayer sites. Mössbauer spectroscopy provided information about crystal chemistry with respect to the local electronic and geometric environment around the Fe atom and to distortions of the polyhedra. It turned out that iron was located mostly in the cis-octahedra position wherein about 75% of iron appeared in the form of Fe 3+. The most preferred cation combinations around Fe corresponded to 3Fe 3+ ions and MgFe 2+Fe 3+/2MgFe 3+. Raman spectroscopy illustrated aluminium substitution in silicon and iron positions wherein the concentration of the aluminium determined the degree of structural distortion within the layered system. These isomorphic substitutions implied a typical band arrangement in the hydroxyl region, which has not been observed in celadonites so far.
Go to article

Authors and Affiliations

Mariola Kądziołka-Gaweł
1
Mateusz Dulski
2
Maria Czaja
3
Tomasz Krzykawski
3
Magdalena Szubka
1

  1. Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
  2. Institute of Material Science, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
  3. Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland

This page uses 'cookies'. Learn more