Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the era of humanoid robotics, navigation and path planning of humanoids in complex environments have always remained as one of the most promising area of research. In this paper, a novel hybridized navigational controller is proposed using the logic of both classical technique and computational intelligence for path planning of humanoids. The proposed navigational controller is a hybridization of regression analysis with adaptive particle swarm optimization. The inputs given to the regression controller are in the forms of obstacle distances, and the output of the regression controller is interim turning angle. The output interim turning angle is again fed to the adaptive particle swarm optimization controller along with other inputs. The output of the adaptive particle swarm optimization controller termed as final turning angle acts as the directing factor for smooth navigation of humanoids in a complex environment. The proposed navigational controller is tested for single as well as multiple humanoids in both simulation and experimental environments. The results obtained from both the environments are compared against each other, and a good agreement between them is observed. Finally, the proposed hybridization technique is also tested against other existing navigational approaches for validation of better efficiency.

Go to article

Authors and Affiliations

Priyadarshi Biplab Kumar
Chinmaya Sahu
Dayal R. Parhi
Download PDF Download RIS Download Bibtex

Abstract

Background: Preeclampsia (PE) is a condition characterized by high blood pressure and significant proteinuria in pregnant women. It affects about 7% pregnancies and can be cause of fetal and maternal morbidity and mortality. During pregnancy, a physiological overexpression of the Renin-An-giotensin System (RAS) components is observed, including increased plasma Ang II level. Dysregulation of RAS in placenta may contribute to preeclampsia and uterine growth retardation. The aim of the study was to evaluate the Ang I metabolism in human preeclamptic placentas and to compare to normal pregnancies condition.
Method: Fragments of placental tissues were collected right after ceasarian section from PE and phy-siological pregnancies. Tissues were incubated in Krebs buffer in the presence of Ang I. Evaluation of Ang I metabolites in incubating fluid was performed by LC/MS/MS method. mRNA expression of main RAS components was measured by RT-PCR.
Results: Pattern of angiotensin metabolites did not differ between groups. The main products were Ang 1–7 and Ang II. Comparing to control group, more than 3-fold lower production of Ang II and Ang 1–7 in preeclampsia was observed. mRNA expressions of ACE and AT1 were significantly decreased in pre-eclamptic placentas, whereas higher expression of mRNA of ACE2 and MAS receptor were observed.
Conclusions: Production of Ang 1–7 by PE placentas was significantly lower than in control group. Significantly decreased mRNA expression of ACE and AT1 receptor and lower production of Ang II in placentas of PE patients suggest that placental Ang II/ACE/AT1r pathway could be less important than Ang 1–7/ACE-2/MASr pathway in development of preeclampsia, but this requires further investigations.
Go to article

Authors and Affiliations

Dominika Stettner-Kołodziejska
1
Beata Bujak-Giżycka
2
Anna Wiśniewska
3
Magdalena Łomnicka
3
Michał Kołodziejski
1
Marcin Wiecheć
1
Krzysztof Rytlewski
1
Hubert Huras
1
Rafał Olszanecki
3

  1. Chair of Gynecology and Obstetrics, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Clinical Pharmacology, Jagiellonian University Medical College, Kraków, Poland
  3. Chair of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

A failure analysis of Babar dam on the El Arab River was performed to highlight the impact of flood wave and velocities on the four villages downstream of the dam; Hella, Khérenne, Chebla and El Oueldja. The simulation of wave propagation along the El Arab River under several scenarios was performed by the hydraulic HEC-RAS model. This model is dedicated to the description of floods at the dam following a breach in the dike. The main factors considered in this simulation include the level of flood water, the flood hydrograph, and the typical scenario for this breach. The flood risk analysis revealed that the maximum of flood wave flow registered at the breach is (Qmax = 9253.02 m3∙s–1), and is beginning to mitigate downstream of the dam along the El Arab River where it reached at the last village with a low flow (Q = 1110.64 m3∙s–1). This simulation allowed drawing the risk map which showed the areas threatened by flood wave resulting from a total failure of the work, and consequently required a plan of security measures to moderate as much as possible the consequences of floods. A sensitivity analysis was conducted to approach the parameters of impact of the breach on the dam failure scenario. It was confirmed that these parameters as formulation time, breach width and side slope have a great influence on the dam failure scenario with the four adjustments (±20 and ±50).

Go to article

Authors and Affiliations

Aissam Gaagai
ORCID: ORCID
Abderrahmane Boudoukha
ORCID: ORCID
Lahcen Benaabidate
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The construction of dams in rivers can offer many advantages, however the consequences resulting from their failure could result in major damage, including loss of life and property destruction. To mitigate the threats of dam break it is essential to appreciate the characteristics of the potential flood in realistic manner. In this study an approach based on the integration of hydraulic modelling and GIS has been used to assess the risks resulting from a potential failure of Zardezas dam, a concrete dam located in Skikda, in the North East of Algeria. HEC-GeoRAS within GIS was used to extract geometric information from a digital elevation model and then imported into HEC-RAS. Flow simulation of the dam break was performed using HEC-RAS and results were mapped using the GIS. Finally, a flood hazard map based on water depth and flow velocity maps was created in GIS environment. According to this map the potential failure of Zardezas dam will place a large number in people in danger. The present study has shown that Application of Geographical Information System (GIS) techniques in integration with hydraulic modelling can significantly reduce the time and the resources required to forecast potential dam break flood hazard which can play a crucial role in improving both flood disaster management and land use planning downstream of dams.

Go to article

Authors and Affiliations

Oussama Derdous
Lakhdar Djemilil
Hamza Bouchehed
Salah Eddine Tachi
Download PDF Download RIS Download Bibtex

Abstract

This study proposes the LoRa-Based Mesh Sensor Network without relying on LoRaWAN connection sending the communication data in the form of Star-to-Star, it can be sends the data in the form of peer-to-peer without the gateway. In the case that a longer distance is needed, the system is connected by a means of multi-hop presenting the hardware and software model through the use of low voltage power. Then, the testing is done using point to point and the received signal is measured by a gauge and compared with the model in accordance with the theoretical principle.
Go to article

Authors and Affiliations

Jarun Khonrang
1
Mingkwan Somphruek
1
Pairoj Duangnakhorn
1
Atikhom Siri
1
Kamol Boonlom
2

  1. Chiang Rai Rajabhat University, Thailand
  2. University of Leeds, United of Kingdom
Download PDF Download RIS Download Bibtex

Abstract

This research is developing the analog value from the NPK sensor to digital using the YL 38 comparator module to obtain detailed Nitrogen (N), Phosphorus (P), and potassium (K) values according to the NPK sensor datasheet. This system is a network based on the Internet of Things (IoT) and LoRa. The IoT and LoRa features installed on this device, meanwhile the measurement and fertilization data can be monitored easily through an Android application. This research using a frequency of 922.4 Mhz, 125 kHz bandwidth, 10 spreading factors, and a code rate of 5. The Network Quality of Services testing i.e. delay, packet loss, SNR, and RSSI. The QoS was measured at 6 locations. different, 1 location 0 km, 4 locations 1 km, 1 location 2.5 km from BTS LoRa. It was concluded that the parameters used are by the conditions and distances in the data collection. It is proven that all the standards in each parameter are met. In testing the LoRa network it can be concluded that the farther the distance from the LoRa BTS the data transmission quality is getting worse.
Go to article

Bibliography

[1] Tamoghna Ojha, Sudip Misra, Narendra, “WSN for agriculture: state of the art in practice and future challenges,” J. Comput. Electron. Agric., 2015, 66–84.
[2] E. Ben-Dor, A. Banin, “Near infrared analysis as a rapid method to simultaneously evaluate several soil properties,” Soil Sci. Soc. Am. J. 1993, 364–372.
[3] W. Van Lierop, “Determination of available phosphorus in acid and calcerous soils with the Kelowna multiple-element extractant,” Soil Sci., 1988, 284–291.
[4] A.B. Ghosh, J.C. Bajaj, R. Hasan, Dhyan Singh, “Soil and Water Testing Methods: A Laboratory Manual,” Division of Soil Science and Agricultural Chemistry, IARA, New Delhi, 1983.
[5] Aldillah, Rizma, Harianto Harianto, and Heny Kuswanti Suwarsinah Daryanto. “Analisis Simulasi Kebijakan untuk Meningkatkan Produksi Kedelai Nasional,” Jurnal Agribisnis Indonesia (Journal of Indonesian Agribusiness) 2.1 (2014): 33-62.
[6] Badan Pusat Statistik, Produksi Padi, Jagung, Kedelai (Angka Ramalan III tahun 2010). Berita Resmi Statistik No. 68/II/Th. XIII, 1 November 2010.
[7] Departemen Pertanian, Mutu Kedelai Nasional Lebih Baik dari Kedelai Impor [Siaran Pers], Jakarta: Badan Litbang Pertanian, 2008.
[8] Azni IN. Formulasi Bahan Makanan Campuran Berbahan Dasar Kedelai, Beras Merah, Dan Pisang Kepok Untuk Makanan Pendamping-Asi. Jurnal Teknologi Pangan dan Kesehatan, Journal of Food Technology And Health, 2019, May 27,1(1):1-7.
[9] A.B. Ghosh, R. Hasan, “Nitrogen fertility status of soils of India,” Fertilizer News 25 (11), 1980.
[10] P. Guillemin, F. Berens, M. Carugi, M. Arndt, L. Ladid, G. Percivall, B. De Lathouwer, S. Liang, A. Bröring, P. Thubert, “Internet of Things Standardisation—Status, Requirements, Initiatives and Organisations,” RIVER PUBLISHERS SERIES IN COMMUNICATIONS, 2013, p.259.
[11] E.D. Widianto, D. Eridani, R.D. Augustinus, M.S. Pakpahan, “Simple LoRa Protocol: Protokol Komunikasi LoRa Untuk Sistem Pemantauan Multisensor,” TELKA-Telekomunikasi, Elektronika, Komputasi dan Kontrol. 2019, Nov 27, 5(2):83-92.
[12] P. Rekha, V.P. Rangan, M.V. Ramesh, K.V. Nibi, “High yield groundnut agronomy: An IoT based precision farming framework,” in IEEE Global Humanitarian Technology Conference (GHTC), 2017, October. (pp. 1-5).
[13] G. Lavanya, C. Rani, P. Ganeshkumar, “An automated low cost IoT based Fertilizer Intimation System for smart agriculture,” Sustainable Computing: Informatics and Systems, 2020, 28, p.100300.
[14] D. Perdana, L. Renaldi, I. Alinursafa, “Performance Analysis of Soil Moisture Monitoring based on Internet of Things with LoRA Communications,” Journal of Southwest Jiaotong University, 2020, 55(5).
[15] D. Perdana, M. Imadudin, G. Bisono, “Performance Evaluation of Soil Substance Measurement System in Garlic Plant based on Internet of Things with Mesh Topology Network Scenario,” International Journal of Communication Networks and Information Security, 2019, 11(3), pp.417-423.
[16] F. Siva, “Smart fertilizer recommendation through NPK analysis using Artificial Neural Networks,” Doctoral dissertation, Strathmore University, 2019.
[17] A.F. Rachmani, F.Y. Zulkifli,. “Design of iot monitoring system based on lora technology for starfruit plantation,” in TENCON 2018-2018 IEEE Region 10 Conference 2018, October, pp. 1241-1245.
[18] N. Cameron, “Radio frequency communication,” in Electronics Projects with the ESP8266 and ESP32, Apress, Berkeley, CA, pp. 399-436.
[19] Datasheet and Instruction of NPK Sensor.2012. [online]. http://www.lusterleaf.com/img/instruction/1865_instruction.pdf.
[20] G.M. Drown, P. Lu, inventors; Intel Corp, assignee. Integrated circuits for generating input/output latency performance metrics using real-time clock (RTC) read measurement module. United States patent US 10,853,283. 2020 Dec 1.
[21] T. Meirina, S. Darmanti, S. Haryanti, “Produktivitas kedelai (Glycine max (L.) Merril var. Lokon) yang diperlakukan dengan pupuk organik cair lengkap pada dosis dan waktu pemupukan yang berbeda,” Anatomi Fisiologi, 2009, 17(2), pp.22-32.
[22] A.G. Manshuri, N. Pemupukan, “P dan K pada kedelai sesuai kebutuhan tanaman dan daya dukung lahan,” J Penelitian Pertanian Tanaman pangan, 2010, 29(3), pp.171-179.
[23] J. Rubio-Aparicio, F. Cerdan-Cartagena, J Suardiaz-Muro, J. Ybarra-Moreno, “Design and implementation of a mixed IoT LPWAN network architecture,” Sensors, 2019, 19(3), p.675.
[24] A. Dash, S. Pal, C. Hegde, “Ransomware Auto-Detection in IoT Devices using Machine Learning,” no. December, 2018, pp.0-10.
[25] A.F. Rachmani, F.Y. Zulkifli, “Design of iot monitoring system based on lora technology for starfruit plantation,” in TENCON 2018-2018 IEEE Region 10 Conference, 2018, October, pp. 1241-1245.
[26] E.D. Widianto, M.S. Pakpahan, R. Septiana, “LoRa QoS Performance Analysis on Various Spreading Factor in Indonesia,” in 2018 International Symposium on Electronics and Smart Devices (ISESD) 2018, October, pp. 1-5.
[27] L. M. Aversa Villela, “Analisis Parameter Lora Pada Lingkungan Outdoor,” J. Chem. Inf. Model., 2020, vol. 53, no. 9, pp. 1689–1699.
[28] D. P., S. K. M., and N. C., “Automatic Plant Irrigation using Solar Panel,” Int. J. Web Technol., vol. 5, no. 2, pp. 114–115, 2017, https://doi.org/10.20894/ijwt.104.005.002.00.
[29] Nuryanto, Lilik Eko., “Penerapan Dari OP-AMP (Operational Amplifier),” Orbith: Majalah Ilmiah Pengembangan Rekayasa dan Sosial, 2017, 13.1. [30] Raditya Yoga Asditama, “Prototype of Automatic Fertilization Control System for Soybean Plants Based on the Internet of Things,” 2020.
[31] K.P. Mhatre, U.P. Khot, „Minimizing Delay Using New Dynamic Blocking Expanding Ring Search Technique for Ad hoc Networks,” International Journal of Electronics and Telecommunications, 2020, Nov 22, 66(4):723-8.
[32] K. Kuliński, A. Heyduk, “Frequency response testing of zero-sequence current transformers for mining ground fault protection relays,” International Journal of Electronics and Telecommunications, 2020, Nov 22, 66(4):701-5.
[33] K. Kuczynski, A. Bilski, P. Bilski, J. Szymanski, “Analysis of the magnetoelectric sensor's usability for the energy harvesting,” International Journal of Electronics and Telecommunications, 2020, 66.
Go to article

Authors and Affiliations

Doan Perdana
1
Wahyu Rizal Panca Kusuma
1
Ibnu Alinursafa
2

  1. Telkom University, Indonesia
  2. PT Telkom Indonesia, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

A key role in the development of smart Internet of Things (IoT) solutions is played by wireless communication technologies, especially LPWAN (Low-Power Wide-Area Network), which are becoming increasingly popular due to their advantages: long range, low power consumption and the ability to connect multiple edge devices. However, in addition to the advantages of communication and low power consumption, the security of transmitted data is also important. End devices very often have a small amount of memory, which makes it impossible to implement advanced cryptographic algorithms on them. The article analyzes the advantages and disadvantages of solutions based on LPWAN communication and reviews platforms for IoT device communication in the LoRaWAN (LoRa Wide Area Network) standard in terms of configuration complexity. It describes how to configure an experimental LPWAN system being built at the Department of Computer Science and Telecommunications at Poznan University of Technology for research related to smart buildings.
Go to article

Authors and Affiliations

Joanna Szewczyk
1
Mariusz Nowak
2
Piotr Remlein
1
Aleksandra Głowacka
2

  1. Poznan University of Technology, Institute of Radiocommunications, Poland
  2. Poznan University of Technology, Institute of Computing Science, Poland
Download PDF Download RIS Download Bibtex

Abstract

Accumulation of LaCl3, a well-known Ca2+-channel blocker, can inhibit plant growth. However, the current understanding of its effects on gene expression is limited. In this paper, different concentrations of LaCl3 (0, 0.5, 1.0, 1.5, 2.0 mM) were used to treat germinated wheat ( Triticum aestivum L.) seeds for 24 h. The degree of root growth inhibition gradually increased with increasing LaCl3 concentration. qRT-PCR analysis revealed that the expression of several key genes related to the cell cycle process, such as pcna, mcm2, rdr and cyclin B, were significantly down-regulated. Further analysis of genomic DNA instability using Random Amplified Polymorphic DNA (RAPD) and methylation levels by Coupled Restriction Enzyme Digestion-Random Amplification (CRED-RA) analysis indicated a significant increase in genomic DNA polymorphisms and methylation levels. The results of this study verified that the reasons why LaCl3 treatment can inhibit the growth of wheat roots are as follows: interference in the normal progression of the cell cycle, induction of genomic DNA instability and increase in DNA methylation levels.
Go to article

Authors and Affiliations

Xia Lei
1
Keshi Ma
2
Feixiong Zhang
1

  1. College of Life Sciences, Capital Normal University, Beijing 100048, China
  2. College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou City, Henan Province, 466001, China
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the comparison of dynamic modulus and phase lag in different loading conditions for asphalt concrete mixture with or without reclaimed asphalt shingles (RAS) addition. For each mixture, 6 samples were tested using the four point bending beam method, at four temperatures and at six frequencies. The results of the study were subjected to the analysis of the statistical significance of differences between mixtures. The graphic form of results presentation includes Black curves and Cole-Cole plots. Then, matching the sigmoidal functions enabled the creation of master curves of the complex stiffness module and the phase shift angle, being a function of the load frequency. It has been observed that the mixture with the addition of RAS has higher stiffness and elasticity in the range of higher temperatures (20°C and 30°C) and lower load frequencies, which results in higher values of the complex stiffness module and lower values of the phase lag. At 0°C, the behavior of both mixtures is very similar, while at 10°C significant differences between the tested mixtures were found only for low frequency loads (up to 5 Hz). Test results have shown that mixtures with the addition of RAS have a lower thermal sensitivity in terms of the complex stiffness modulus and phase lag than the reference mixture. The above results confirmed an improvement in rutting resistance for RAS mixes observed in previous work.
Go to article

Bibliography


[1] Pouranian M. R., Shishehbor M., “Sustainability Assessment of Green Asphalt Mixtures: A Review”, Environments 2019, 6, 73, p. 55. https://doi.org/10.3390/environments6060073
[2] Williams R.C., Cascione A., Yu J., Haugen D., Marasteanu M., McGraw J., “Performance of recycled asphalt shingles in hot mix asphalt”, Institute for Transportation and Iowa State University, August 2013.
[3] J.J. Foxlow, J.S. Daniel, A.K. Swamy, ”RAP or RAS? The differences in performance of HMA containing reclaimed asphalt pavement and reclaimed asphalt shingles”, Journal of the Association of Asphalt Paving Technologists, Volume 80, pp 347–376, 2011.
[4] Barry K., Daniel J. S., Foxlow J., Gray K., “An evaluation of reclaimed asphalt shingles in hot mix asphalt by varying sources and quantity of reclaimed asphalt shingles”, Road Materials and Pavement Design, Vol. 15, No. 2, 2014, pp. 259–271. https://doi.org/10.1080/14680629.2013.861765
[5] H. Baaj, M. Ech, N. Tapsoba, C. Sauzeat, H. Di Benedetto, “Thermomechanical characterization of asphalt Mixtures modified with high contents of asphalt shingle modifier (ASM®) and reclaimed asphalt pavement (RAP)”, Materials and Structures, 2013, https://doi.org/10.1617/s11527-013-0015-7
[6] Zhou F., Li H., Hu S., Button J.W., Epps J.A., ”Characterization and best use of recycled asphalt shingles in hot-mix asphalt”, Report No. FHWA/TX-13/0-6614-2, TEXAS A&M TRANSPORTATION INSTITUTE, USA, 2013, p. 107.
[7] J. Darnell, C.A. Bell, ”Performance based selection of RAP/RAS in asphalt mixtures”, Report No. FHWA/OR-RD-16-08, Oregon Dept. of Transportation, Washington, USA, p. 107, 2015.
[8] Jaczewski M., Judycki J., Jaskuła P., „Lepkoplastyczne modelowanie mieszanek mineralno-asfaltowych przy długim czasie obciążenia za pomocą krzywych wiodących i jego ograniczenia”, Drogownictwo, 10/2015, pp. 336–340.
[9] P. Zieliński, “Study of the possibility of increasing manufacture waste asphalt shingles additive to hot mix asphalt”, 18 International Multidisciplinary Scientific GeoConference SGEM 2018, Volume 18, 2018, pp. 191–198. https://doi.org/10.5593/sgem2018/4.2/S18.025
[10] PN-EN 12697-33 „Mieszanki mineralno-asfaltowe. Metody badań mieszanek mineralno-asfaltowych na gorąco”. Część 33: Przygotowanie próbek zagęszczanych urządzeniem wałującym.
[11] PN-EN 12697-26 „Mieszanki mineralno-asfaltowe. Metody badań mieszanek mineralno-asfaltowych na gorąco”. Część 26: Sztywność.
[12] Computer Program Statgraphics Plus v. 5.1, A Manugistics Inc. Product, Rockville, MD USA, 2000,
[13] R. Bonaquist, “NCHRP Report 614 Refining the Simple Performance Tester for Use In Routine Practice”, Project 9–29, Transportation Research Board, Washington 2008. https://dx.doi.org/10.17226/14158
[14] źródło internetowe, https://onlinepubs.trb.org/onlinepubs/nchrp/docs/NCHRP09-29_mastersolver2-2.xls, dostęp: 25.03.2019r.
[15] M. Jaczewski, Ł. Mejłun, „Wyznaczanie parametrów lepkosprężystego modelu Burgersa mieszanek mineralno-asfaltowych na podstawie badania pod obciążeniem dynamicznym”, Drogownictwo, 11/2013, pp. 344–348.
Go to article

Authors and Affiliations

Piotr Zieliński
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

When modelling flow and/or sediment transport in streams and rivers, one must frequently use the computer software of differing levels of complexity. The level of sophistication, accuracy, and quality of results are the parameters by which models can be classified as being 1D, 2D, or 3D; it seems certain that in the future, there will also be 4D and 5D models. However, the results obtained from very sophisticated models are frequently questionable, and designers in the field of hydraulic structures must have considerable experience distinguishing important information from irrelevant information. Thus, this paper aims to investigate the effect of the selected boulder block ramp hydraulic structure at Poniczanka stream on the bed-load transport. We evaluated sediment transport using the CCHE2D numerical model. We analysed several scenarios depending on the river bed type (erodible, non-erodible, rocky) and examined the rock blocks used for hydraulic structure construction. The obtained results were compared with the Hjulström and the Shields graph, which are a classic approach for identifying fluvial processes in river channels. In addition to these two methods, numerical modelling using the 1D HEC-RAS (Hydrologic Engineering Center’s River Analysis System) modelling were conducted, which included the determination of horizontal and vertical changes to the river bed morphology of the examined section of river reach as well as providing the basic hydrodynamics parameters which, from the practical point of view, designers involved in the process of designing ramps could use.
Go to article

Authors and Affiliations

Karol K. Plesiński
1
ORCID: ORCID
Artur Radecki-Pawlik
2
ORCID: ORCID
Fabian Rivera-Trejo
3
ORCID: ORCID

  1. University of Agriculture in Krakow, Faculty Environmental Engineering and Land Surveying, Department of Hydraulic Engineering and Geotechnics, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  2. Cracow University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics and Materials, Kraków, Poland
  3. Juarez Autonomous University of Tabasco, Academic Division of Engineering and Architecture, Cunduacan, Tabasco, Mexico
Download PDF Download RIS Download Bibtex

Abstract

This article provides a comparison of various wireless data transmission protocols, such as Wireless M-Bus, Lo- RaWAN, Sigfox, NB-IoT and a newly developed proprietary protocol, studying their performance in the application of batterypowered residential water meters. Key aspects of the comparison include energy consumption, which is analyzed through comparing unitary amount of charge required to conduct a single, bidirectional data transaction between the meter and base station, and maximum coupling loss which effectively defines the range and coverage in the system. For completeness, the study includes also a brief cost analysis and ends with a conclusion, stating when each of the particular standards should be favored.
Go to article

Authors and Affiliations

Łukasz Krzak
1
Jan Macheta
1
Mateusz Kubaszek
1
Cezary Worek
1

  1. Institute of Electronics, Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

A novice advanced architecture of 8-bit analog to digital converter is introduced and analyzed in this paper. The structure of proposed ADC is based on the sub-ranging ADC architecture in which a 4-bit resolution flash-ADC is utilized. The proposed ADC architecture is designed by employing a comparator which is equipped with common mode current feedback and gain boosting technique (CMFD-GB) and a residue amplifier. The proposed 8 bits ADC structure can achieve the speed of 140 megasamples per second. The proposed ADC architecture is designed at a resolution of 8 bits at 10 MHz sampling frequency. DNL and INL values of the proposed design are -0.94/1.22 and -1.19/1.19 respectively. The ADC design dissipates a power of 1.24 mW with the conversion speed of 0.98 ns. The magnitude of SFDR and SNR from the simulations at Nyquist input is 39.77 and 35.62 decibel respectively. Simulations are performed on a SPICE based tool in 90 nm CMOS technology. The comparison shows better performance for this proposed ADC design in comparison to other ADC architectures regarding speed, resolution and power consumption.
Go to article

Bibliography

[1] Y. Zhou, B. Xu and Y. Chiu, “A 12-b 1-GS/s 31.5-mW Time-Interleaved SAR ADC With Analog HPF-Assisted Skew Calibration and Randomly Sampling Reference ADC,” IEEE Journal of Solid-State Circuits 54, 8, 2207-2218, (2019). https://doi.org/10.1109/JSSC.2019.2915583.
[2] D. Oh, J. Kim, D. Jo, W. Kim, D. Chang and S. Ryu, “A 65-nm CMOS 6-bit 2.5-GS/s 7.5-mW 8 x Time-Domain Interpolating Flash ADC With Sequential Slope-Matching Offset Calibration,” IEEE Journal of Solid-State Circuits 54, 1, 288- 297,(2019). https://doi.org/10.1109/JSSC.2018.2870554.
[3] A. Wu, J. Wu, and J. Huang, “Energy-efficient switching scheme for ultra-low voltage SAR ADC.”, Analog Integr Circ Sig Process 90, 507–511, (2017). https://doi.org/10.1007/s10470-016-0892-0
[4] M. Guo, J. Mao, S. Sin, H. Wei and R. P. Martins, “A 1.6- GS/s 12.2-mW Seven-/Eight-Way Split Time-Interleaved SAR ADC Achieving 54.2-dB SNDR With Digital Background Timing Mismatch Calibration,”IEEE Journal of Solid-State Circuits 55, 3,693-705, (2020). https://doi.org/10.1109/JSSC.2019.2945298.
[5] M. Davidovic, G. Zach, H. Zimmermann, “An 11-bit successive approximation analog-to-digital converter based on a combined capacitor-resistor network.”, Elektrotech. Inftech. 127, 98–102, (2010). https://doi.org/10.1007/s00502-010-0704-7
[6] D. Chang, W. Kim, M. Seo, H. Hong, and S. Ryu, “Normalized- Full-Scale-Referencing Digital-Domain Linearity Calibration for SAR ADC.”, IEEE Transactions on Circuits and Systems I: Regular Papers. 64, 2, 322-332 (2017). https://doi.org/10.1109/TCSI.2016.2612692
[7] M. Shim et al.,“Edge-Pursuit Comparator: An Energy-Scalable Oscillator Collapse-Based Comparator With Application in a 74.1 dB SNDR and 20 kS/s 15 b SAR ADC”, IEEE Journal of Solid-State Circuits 52, 4, 1077-1090, (2017). https://doi.org/10.1109/JSSC.2016.2631299
[8] D. Zhang and A. Alvandpour, “A 12.5-ENOB 10-kS/s Redundant SAR ADC in 65-nm CMOS”, IEEE Transactions on Circuits and Systems II: Express Briefs 63, 3, 244-248, (2016). https://doi.org/10.1109/TCSII.2015.2482618.
[9] S.A. Zahrai, M. Onabajo, “ Review of Analog-To-Digital Conversion Characteristics and Design Considerations for the Creation of Power- Efficient Hybrid Data Converters.”, J. Low Power Electron. Appl. 8, 12, (2018). https://doi.org/10.3390/jlpea8020012
[10] S.Taheri, J. Lin, J. S. Yuan,“Security Interrogation and Defense for SAR Analog to Digital Converter.”, Electronics 6, 48, (2017). https://doi.org/10.3390/electronics6020048
[11] J. Kim, B. Sung, W. Kim and S. Ryu, “A 6-b 4.1-GS/s Flash ADC With Time-Domain Latch Interpolation in 90-nm CMOS”, IEEE Journal of Solid-State Circuits 48, 6, 1429-1441, (2013). https://doi.org/10.1109/JSSC.2013.2252516
[12] S. Danesh, J. Hurwitz, K. Findlater, D. Renshaw and R. Henderson, “A Reconfigurable 1 GSps to 250 MSps, 7-bit to 9-bit Highly Time-Interleaved Counter ADC with Low Power Comparator Design”, IEEE Journal of Solid-State Circuits 48, 3, 733-748, (2013). https://doi.org/10.1109/JSSC.2013.2237672
[13] L. Wang, M. LaCroix and A. C. Carusone, “A 4-GS/s Single Channel Reconfigurable Folding Flash ADC for Wireline Applications in 16-nm FinFET.”, IEEE Transactions on Circuits and Systems II: Express Briefs 64, 12, 1367-1371, (2017). https://doi.org/10.1109/TCSII.2017.2726063
[14] F. M´arquez, et al., “A novel autozeroing technique for flash Analog-to-Digital converters.”, Integration 47, 1, 23-29, (2014). https://doi.org/10.1016/j.vlsi.2013.06.002
[15] Masumeh Damghanian, Seyed Javad Azhari, “A low-power 6-bit MOS CML flash ADC with a novel multi-segment encoder for UWB applications.”, Integration 57, 158-168, (2017). https://doi.org/10.1016/j.vlsi.2017.01.006
[16] Y. Wang, M. Yao, B. Guo, Z. Wu, W. Fan and J. J. Liou, “A Low-Power High-Speed Dynamic Comparator With a Transconductance-Enhanced Latching Stage,” IEEE Access 7, 93396- 93403,(2019). https://doi.org/10.1109/ACCESS.2019.2927514.
[17] A. Khatak, M. Kumar, S. Dhull, “An Improved CMOS Design of Op-Amp Comparator with Gain Boosting Technique for Data Converter Circuits.”, J. Low Power Electron. Appl. 8, 33, (2018). https://doi.org/10.3390/jlpea8040033.
[18] B. Hershberg et al., “3.6 A 6-to-600MS/s Fully Dynamic Ringamp Pipelined ADC with Asynchronous Event-Driven Clocking in 16nm,” 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA 68-70, (2019). https://doi.org/10.1109/ISSCC.2019.8662319.
[19] U. Chio et al., “Design and Experimental Verification of a Power Effective Flash-SAR Sub ranging ADC.”, IEEE Transactions on Circuits and Systems II: Express Briefs 57, 8, 607-611, (2010). https://doi.org/10.1109/TCSII.2010.2050937
[20] Young-Deuk Jeon et al., “A dual-channel pipelined ADC with sub-ADC based on flash-SAR architecture.”, Circuits and Systems II: Express Briefs 59, 741-745. (2012). https://doi.org/10.1109/TCSII.2012.2222837
[21] Y. Lin et al.,“ A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS.”, IEEE Transactions on Circuits and Systems I: Regular Papers 60, 3, 570-581, (2013). https://doi.org/10.1109/TCSI.2012.2215756
[22] J.I. Lee, J. Song, “Flash ADC architecture using multiplexers to reduce a preamplifier and comparator count.”, 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013) 1-4, (2013). https://doi.org/10.1109/TENCON.2013.6718487
[23] A. Esmailiyan, F. Schembari and R. B. Staszewski, “A 0.36-V 5-MS/s Time-Mode Flash ADC With Dickson-Charge-Pump- Based Comparators in 28-nm CMOS,”IEEE Transactions on Circuits and Systems I: Regular Papers 67, 6, 1789-1802, (2020). https://doi.org/10.1109/TCSI.2020.2969804.
[24] J. Xu, et al., “Low-leakage analog switches for low-speed sample-and-hold circuits”, Microelectronics Journal 76, 22–27, (2018). https://doi.org/10.1016/j.mejo.2018.04.008
[25] M. Nazari, L. Sharifi,A. Aghajani, and O. Hashemipour, “A 12-bit high performance current-steering DAC using a new binary to thermometer decoder.”, 2016 24 Iranian Conference on Electrical Engineering (ICEE), Shiraz 2016 1919-1924, (2016). https://doi.org/10.1109/IranianCEE.2016.7585835
[26] H.S. Bindra et al., “A 1.2-V Dynamic Bias Latch-Type Comparator in 65-nm CMOS With 0.4-mV Input Noise.”, IEEE Journal of Solid-State Circuits 53, 7, 1902-1912, (2018). https://doi.org/10.1109/JSSC.2018.2820147
[27] A. Taghizadeh, Z.D. Koozehkanani, J. Sobhi, “A new high-speed lowpower and low-offset dynamic comparator with a current-mode offset compensation technique.”, AEU - Int. J. Electron. Commun. 81, 163–170, (2018). https://doi.org/10.1016/j.aeue.2017.07.018.
[28] M. Saberi and R. Lotfi,“ Segmented Architecture for Successive Approximation Analog-to-Digital Converters.”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 22, 3, 593-606, (2014). https://doi.org/10.1109/TVLSI.2013.2246592
[29] Y. Haga et al., “Design of a 0.8 Volt fully differential CMOS OTA using the bulk-driven technique.”, 2005 IEEE International Symposium on Circuits and Systems 1, 220-223, (2005). https://doi.org/10.1109/ISCAS.2005.1464564.
[30] J. Lagos, B. P. Hershberg, E. Martens, P. Wambacq and J. Craninckx, “A 1-GS/s, 12-b, Single-Channel Pipelined ADC With Dead-Zone- Degenerated Ring Amplifiers,” IEEE Journal of Solid-State Circuits 54, 3, 646-658, (2019). https://doi.org/10.1109/JSSC.2018.2889680.
[31] Y. Lim and M. P. Flynn, “A 1 mW 71.5 dB SNDR 50 MS/s 13 bit Fully Differential Ring Amplifier Based SAR-Assisted Pipeline ADC,” IEEE Journal of Solid-State Circuits 50, 12, 2901-2911, (2015). https://doi.org/10.1109/JSSC.2015.2463094
[32] B. Murmann, “The successive approximation register ADC: a versatile building block for ultra-low- power to ultra-high-speed applications.”, IEEE Communications Magazine 54, 4, 78-83, (2016). https://doi.org/10.1109/MCOM.2016.7452270
[33] T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,” 2010 IEEE Asia Pacific Conference on Circuits and Systems, Kuala Lumpur196-199, (2010). https://doi.org/10.1109/APCCAS.2010.5774747.
[34] M. Hotta et al., “SAR ADC Architecture with Digital Error Correction.”. IEEJ Trans Elec Electron Eng 5, 651-659, (2010). https://doi.org/10.1002/tee.20588
[35] S. Lee, A.P. Chandrakasan and H. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC with Background Timing Skew Calibration.”, IEEE Journal of Solid-State Circuits 49, 12, 2846-2856, (2014). https://doi.org/10.1109/JSSC.2014.2362851
[36] M. Damghanian and S.J. Azhari, “A novel three-section encoder in a low-power 2.3 GS/s flash ADC.”, Microelectronics J 82, 71–80, (2018). https://doi.org/10.1016/j.mejo.2018.10.009
[37] Yi. Shen and Z. Zhu, “Analysis and optimization of the twostage pipelined SAR ADCs.”, Microelectronics Journal 47, 1–5, (2016). https://doi.org/10.1016/j.mejo.2015.10.018.
[38] Rui Ma, Lisha Wang, Dengquan Li, Ruixue Ding, Zhangming Zhu,“A 10-bit 100-MS/s 5.23 mW SAR ADC in 0.18 μm CMOS.”,Microelectronics Journal 78, 63-72, (2018). https://doi.org/10.1016/j.mejo.2018.06.007
[39] X. Xin et al.,“A 0.4-V 10-bit 10-KS/s SAR ADC in 0.18 μm CMOS for low energy wireless senor network chip.”,Microelectronics Journal 83, 104–116, (2019). https://doi.org/10.1016/j.mejo.2018.11.017
[40] W. Guo, S. Liu, and Z. Zhu, “ An asynchronous 12-bit 50MS/s rail-torail Pipeline-SAR ADC in 0.18 μm CMOS.”, Microelectronics Journal 52, 23–30, (2016). https://doi.org/10.1016/j.mejo.2016.03.003
[41] B. Samadpoor Rikan et al.,“A 10-bit 1 MS / s segmented Dual-Sampling SAR ADC with reduced switching energy.”, Microelectronics Journal 70, 89–96, (2017). https://doi.org/10.1016/j.mejo.2017.11.005
Go to article

Authors and Affiliations

Anil Khatak
1
ORCID: ORCID
Manoj Kumar
2
Sanjeev Dhull
3

  1. Faculty of Biomedical Engineering, GJUS&T, Hisar, Haryana, India
  2. Faculty of USICT, Guru Gobind Singh Indraprastha University, New Delhi, India
  3. Faculty of ECE, GJUS&T, Hisar, Haryana, India

This page uses 'cookies'. Learn more