Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper was to attain defect free, pure copper castings with the highest possible electrical conductivity. In this connection, the effect of magnesium additives on the structure, the degree of undercooling (ΔTα = Tα-Tmin, where Tα – the equilibrium solidification temperature, Tmin – the minimum temperature at the beginning of solidification), electrical conductivity, and the oxygen concentration of pure copper castings have been studied. The two magnesium doses have been investigated; namely 0.1 wt.% and 0.2 wt.%. A thermal analysis was performed (using a type-S thermocouple) to determine the cooling curves. The degree of undercooling and recalescence were determined from the cooling and solidification curves, whereas the macrostructure characteristics were conducted based on a metallographic examination. It has been shown that the reaction of Mg causes solidification to transform from exogenous to endogenous. Finally, the results of electrical conductivity have been shown as well as the oxygen concentration for the used Mg additives.

Go to article

Authors and Affiliations

M. Kranc
A. Garbacz-Klempka
M. Górny
G. Sikora
Download PDF Download RIS Download Bibtex

Abstract

Nowadays the automotive industry mostly prefers innovative solid-state welding technologies that would enable to welding of lightweight and high-performance materials. In this work, 3105-H18 Aluminium alloy (Al) and pure Copper (Cu) specimens with 0.5 mm thickness have been ultrasonically welded in a dissimilar (Al-Cu) manner. Optimization of process parameters of ultrasonic welding has been carried out through full factorial method, three levels of variables considered for this experimental studies namely, weld pressure, amplitude, and time, also each variable interaction with welding strength has been studied. Additionally, micro-hardness and microstructure investigation in welded joints has been studied. The result shows that the weld strength greatly influenced weld amplitude at a medium and higher level of weld pressure. The interface micro-hardness of the welded joint has lower compared to the base metal.
Go to article

Bibliography

[1] H . Peng, X. Jiang, X. Bai, D. Li, D. Chen, Metals 8 (4), 2075-4701 (2018). DOI: https://doi.org/10.3390/met8040229
[2] A.B. Pereira, A. Cabrinha, F. Rocha, P. Marques, F.A. Fernandes, R.J. Alves de Sousa, Metals 9 (1), 102 (2019). DOI: https://doi.org/10.3390/met9010102
[3] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (2), 179 (2019). DOI: https://doi.org/10.3390/met9020179
[4] N. Eslami, Y. Hischer, A. Harms, D. Lauterbach, S. Böhm, Metals 9 (1), 63 (2019). DOI: https://doi.org/10.3390/met9010063
[5] Z. Ni, F. Ye, Mater. Lett. 182 (19-22), (2016). DOI: https://doi.org/10.1016/j.matlet.2016.06.071
[6] S . Salifu, D. Desai, O. Ogunbiyi, R. Sadiku, O. Adesina, O. Adesina, Mater. Today:. Proc., (2020). DOI: https://doi.org/10.1016/j.matpr.2020.03.828
[7] J . Wang, W. Wei, X. Huang, L. Li, F. Pan, Mater. Sci. Eng. A, 529, 497 (2011). DOI: https://doi.org/10.1016/j.msea.2011.09.058
[8] D.-M. Iordache, C.-M. Ducu, E.-L. Niţu, D. Iacomi, A.-G. Plăiaşu, MATEC Web of Conferences. 112: p. 04005, (2017). DOI: https://doi.org/10.1051/matecconf/201711204005
[9] J . Lee, D. Bae, W. Chung, K. Kim, J. Lee, Y. Cho, J. Mater. Process. Technol. 187, 546-549 (2007). DOI: https://doi.org/10.1016/j.jmatprotec.2006.11.121
[10] S . Elangovan, K. Prakasan, V. Jaiganesh, Int. J. Adv. Manuf. Technol. 51 (1-4), 163-171 (2010). DOI: https://doi.org/10.1007/s00170-010-2627-1
[11] M.P. Satpathy, B.R. Moharana, S. Dewangan, S.K. Sahoo, Eng. Sci. Technol. Int. J. 18 (4), 634-647 (2015). DOI: https://doi.org/10.1016/j.jestch.2015.04.007
[12] E . Sooriyamoorthy, S.P.J. Henry, P. Kalakkath, Int. J. Adv. Manuf. Technol. 55 (5-8), 631-640 (2011). DOI: https://doi.org/10.1007/s00170-010-3059-7
[13] M.P. Satpathy, S.K. Sahoo, S. Datta, Appl. Mech. Mater. 592, 652-657 (2014). DOI: https://doi.org/10.4028/www.scientific.net/AMM.592- 594.652
[14] U . Khan, N.Z. Khan, J. Gulati, Procedia. Eng. 173, 1447-1454 (2017). DOI: https://doi.org/10.1016/j.proeng.2016.12.210
[15] J . Liu, B. Cao, J. Yang, J. Manuf. Process. 35, 595-603, (2018). DOI: https://doi.org/10.1016/j.jmapro.2018.09.008
Go to article

Authors and Affiliations

A. Mohan Kumar
1
ORCID: ORCID
R. Rajasekar
1
ORCID: ORCID
V. Karthik
2
ORCID: ORCID
S. Kheawhom
3
ORCID: ORCID

  1. School of Building and Mechanical Sciences, Kongu Engineering College, Erode, Tamilnadu, India - 6380602
  2. NIT, Tiruchirappalli, Department of Metallurgical and Materials Engineering, Tamilnadu, India – 620015
  3. Chulalongkorn University, Faculty of Engineering, Department of Chemical Engineering, Bangkok, Thailand – 10330
Download PDF Download RIS Download Bibtex

Abstract

Electrical contacts are used in general electrical applications such as circuit breakers, switches, relays, connectors, etc. Repeated separations of the parts (anode and cathode) of these contacts under input power can damage their contact materials. The objective of this work is to study the influence of the input electric power (100 W and 256W) and the contact sizes (hemispherical contacts with diameters D=5mm and D=8mm) on the variation of the arc energy and the damage of the contact surfaces by oxidization or by erosion. These parameters are decisive for selecting the best arc-resistant contact sample. Experimental results, SEM, and EDX analysis show that high input power leads to more degradation of contact surfaces. Also, the smaller and the larger contact diameters generate similar arcing energies with similar erosion sizes and oxidation rates, but contact with a small diameter has a higher lifetime (1215 operations) and oxidizes less quickly than the one with a large diameter that has a lower lifetime (374 operations). Experimental and numerical analyses demonstrate that arc mobility is one of several factors influencing the change in contact lifetime.
Go to article

Authors and Affiliations

Kada Hadda
1 2
ORCID: ORCID
Amine Beloufa
1
ORCID: ORCID
Mohamed Amirat
1
ORCID: ORCID
Aissa Boutte
2
ORCID: ORCID

  1. Smart Structure Laboratory, University of Ain Temouchent, Algeria
  2. Algerian Space Agency - Satellite Development Center, Oran, Algeria

This page uses 'cookies'. Learn more