Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94 % with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.

Go to article

Authors and Affiliations

Im Doo Jung
Jungho Choe
Jaecheol Yun
Sangsun Yang
Dong-Yeol Yang
Yong-Jin Kim
Ji-Hun Yu
Download PDF Download RIS Download Bibtex

Abstract

Co-Cr-Mo based sheet I-WP lattice was fabricated via laser powder bed fusion. The effect of microstructure and the I-WP shape on compressive mechanical response was investigated. Results of compression test showed that yield strength of the sheet I-WP was 176.3 MPa and that of bulk Co-Cr-Mo (reference material) was 810.4 MPa. By applying Gibson-Ashby analytical model, the yield strength of the lattice was reversely estimated from that of the bulk specimen. The calculated strength of the lattice obtained was 150.7 MPa. The shape of deformed lattice showed collective failure mode, and its microstructure showed that strain-induced martensitic transformation occurred in the overall lattice. The deformation behavior of additively manufactured sheet I-WP lattice was also discussed.
Go to article

Authors and Affiliations

So-Yeon Park
1
ORCID: ORCID
Kyu-Sik Kim
2
ORCID: ORCID
Bandar Almangour
3
ORCID: ORCID
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon, Korea
  2. Agency for Defense Development, Daejeon, Korea
  3. Interdisciplinary Research Center for Intelligent Manufacturing & Robotics, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabi

This page uses 'cookies'. Learn more