Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Results of investigations of wear resistant of two species of cast steel were introduced in the article (low-alloyed and chromium cast steel) on the background of the standard material which was low alloy wear resistant steel about the trade name CREUSABRO ®8000. The investigations were executed with two methods: abrasive wears in the stream of loose particles (the stream of quartz sand) and abrasive wears particles fixed (abrasive paper with the silicon carbide). Comparing the results of investigations in the experiments was based about the counted wear index which characterizes the wears of the studied material in the relation to the standard material.

Go to article

Authors and Affiliations

A. Studnicki
J. Szajnar
Download PDF Download RIS Download Bibtex

Abstract

In this paper crystallization studies of low-alloyed construction cast steel were presented for different additions of chromium, nickel and

molybdenum modified with vanadium and titanium. Studies were conducted using developed TDA stand, which additionally enabled

evaluation of cooling rate influence on crystallization process of investigated alloys.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
J. Szajnar
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for

heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were

performed using the modified in Department of Foundry pin-on-disc method.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
J. Szajnar
T. Wróbel
J. Suchoń
D. Bartocha
Download PDF Download RIS Download Bibtex

Abstract

In the paper the results and analysis of corrosion tests were presented for low-alloyed cast steel in as-cast state and after heat treatment

operations. Such alloys are applied for heavy loaded parts manufacturing, especially for mining industry. The corrosion test were

performed in conditions of high salinity, similar to those occurring during the coal mining. The results have shown, that small changes in

chemical composition and the heat treatment influence significantly the corrosion behaviour of studied low-alloyed cast steels.

Go to article

Authors and Affiliations

A. Studnicki
M. Kondracki
J. Szajnar
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of research into the characteristics of cast steel alloyed with chromium and vanadium, subjected to heat treatment for increased strength parameters. In the first part, it discusses the state-of-the-art knowledge regarding technological developments in the field of cast-steel alloys and the influence of individual alloying additives on the microstructure and the properties of the steel alloy. Further sections present the results of microstructure observations performed with light microscopy, scanning electron microscopy, and transmission electron microscopy. This research focuses on the material in the state directly after casting and after heat treatment, which involved quenching and tempering at 200 °C. The microstructural analysis performed as part of this research has informed the discussion of the results obtained from tensile and impact strength tests. The article also includes the results of a fractography analysis performed as the final part of the tests and offers a general summary and conclusions.
Go to article

Bibliography

[1] Bartocha, D., Kilarski, J., Suchoń, J., Baron, C., Szajnar, J. & Janerka, K. (2011). Low-alloy constructional cast steel. Archives of Foundry Engineering. 11(spec.3), 265-271. ISSN (1897-3310). (in Polish).
[2] Skołek, E., Szwejkowska, K., Chmielarz, K., Świątnicki, W. A., Myszka, D. & Wieczorek, A.N. (2022). The microstructure of cast steel subjected to austempering and B-Q&P heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 53(7), 2544-2560. https://doi.org/10.1007/s11661-022-06685-3.
[3] Kniaginin, G. (1977). Cast steel: Metallurgy and foundry. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[4] Sobula, S., Tęcza, G., Krasa, O. & Wajda, W. (2013). Grain refinement of low alloy Cr-Mn-Si-Ni-Mo cast steel with boron, titanium and rare elements additions. Archives of Foundry Engineering. 13(3) 153-156. ISSN (1897-3310). (in Polish).
[5] Gajewski, M. & Kasińska, J. (2012). Effects of Cr - Ni 18/9 austenitic cast steel modification by mischmetal. Archives of Foundry Engineering. 12(spec.4), 47-52. DOI: 10.2478/v10266-012-0105-y.
[6] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A., Manchev, M. & Manolov, V. (2011). Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles. Materials & Design. 32(5), 2734-2741. DOI: 10.1016/J.MATDES.2011.01.024.
[7] Yang, S.Z. (2010). Vanadium Metallurgy. Beijing: Metallurgical Industry Press.
[8] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[9] Baoxiang, Y., Jinyong, H., Guifang, Z. & Jike, G. (2021). Applications of vanadium in the steel industry. Vanadium. 267-332. DOI: 10.1016/B978-0-12-818898-9.00011-5.
[10] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Syromyatnikova, A.S., Bolshakov, A.M., Berto, F., Prentkovskis, O. & Ovechkin, B.B. (2017). Effect of operating degradation in arctic conditions on physical and mechanical properties of 09Mn2Si pipeline steel. Procedia Engineering. 178, 597-603. https://doi.org/10.1016/j.proeng.2017.01.117.
[11] Wyrzykowski, J.W., Pleszakow, E. & Sieniawski, J. (1999). Deformation and cracking of metals. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[12] Kocańda, S. (1972). Fatigue destruction of metals. Warszawa: Wydawnictwo: Naukowo-Techniczne. (in Polish).
[13] Maciejny, A. (1973). Brittleness of metals. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[14] Kalandyk, B. & Zapała, R. (2008). Effect of heat treatment parameters on the properties of low-alloy cast steel with microadditions of vanadium. Archives of Foundry Engineering. 8(3), 137-140. ISSN(1897-3310).
[15] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Optimisation of microstructure, yield and impact strength of carbon cast steel by vanadium additions. Przegląd Odlewnictwa. 59(3), 108-113. (in Polish).
[16] Kalandyk, B. & Głownia, J. (2003). Influence of V and Mo and heat treatment of constructional Mn–Ni cast steels acquirement of yield strength above 850MPa. Archiwum Odlewnictwa. 3(8), 69-74. (in Polish). ISSN 1642-5308.
[17] Szajnar, J., Studnicki, A., Głownia, J., Kondracki, M., Suchoń, J. & Wróbel, T. (2013). Technological aspects of low-alloyed cast steel massive casting manufacturing. Archives of Foundry Engineering. 13(4), 97-102. ISSN (1897-3310).
[18] Sobula, S., Rąpała, M., Tęcza, G., & Głownia, J. (2009). Cast steels of a yield strength above 1300 MPa comparable to forgings. Przegląd Odlewnictwa. 59(3), 102-106. (in Polish).

Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID

  1. Wrocław University of Technology, Poland

This page uses 'cookies'. Learn more