Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study includes the results of research conducted on selected lead-free binary solder alloys designed for operation at high temperatures.

The results of qualitative and quantitative metallographic examinations of SnZn alloys with various Zn content are presented. The

quantitative microstructure analysis was carried out using a combinatorial method based on phase quanta theory, per which any

microstructure can be treated as an array of elements disposed in the matrix material. Fatigue tests were also performed using the

capabilities of a modified version of the LCF method hereinafter referred to in short as MLCF, which is particularly useful in the

estimation of mechanical parameters when there are difficulties in obtaining many samples normally required for the LCF test. The fatigue

life of alloys was analyzed in the context of their microstructure. It has been shown that the mechanical properties are improved with the

Zn content increasing in the alloy. However, the best properties were obtained in the alloy with a chemical composition close to the

eutectic system, when the Zn-rich precipitates showed the most preferred morphological characteristics. At higher content of Zn, a strong

structural notch was formed in the alloy because of the formation in the microstructure of a large amount of the needle-like Zn-rich

precipitates deteriorating the mechanical characteristics. Thus, the results obtained during previous own studies, which in the field of

mechanical testing were based on static tensile test only, have been confirmed. It is interesting to note that during fatigue testing, both

significant strengthening and weakening of the examined material can be expected. The results of fatigue tests performed on SnZn alloys

have proved that in this case the material was softened.

Go to article

Authors and Affiliations

M. Maj
A. Wojciechowski
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

The article presents the study results of Sn-Zn lead-free solders with the various Zn content. The results concern the hypoeutectic, eutectic and hypereutectic alloys containing respectively 4.5% Zn, 9% Zn and 13.5% Zn. Moreover, these alloys contain the constant Ag (1%) addition. The aim of the study was to determine the microstructural conditionings of their fatigue life. In particular it was focused on answer the question what meaning can be assigned to the Ag addition in the chemical composition of binary Sn-Zn alloys. The research includes a qualitative and quantitative assessments of the alloy microstructures, that have been carried out in the field of light microscopy (LM). In order to determine some geometrical parameters of the microstructure of alloys the combinatorial method based on the phase quanta theory was applied. Moreover, for the identification necessities the chemical analyses in the micro-areas by SEM/EDS technics were also performed. Based on the SEM/EDS results the phases and intermetallic compounds existing in the examined lead-free solders were identified. The mechanical characteristics were determined by means of the modified low cycle test (MLCF). Based on this method and on the results obtained every time from only one sample the dozen of essential mechanical parameters were evaluated. The research results were the basis of analyzes concerning the effects of microstructural geometrical parameters of lead-free alloys studied on their fatigue life at ambient temperature.

Go to article

Authors and Affiliations

M. Maj
A. Wojciechowski
K. Pietrzak
A. Klasik
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

For long time, Sn-Pb solder alloys have been used extensively as the main interconnection materials in the soldering. It is no doubt that Sn-Pb offers many advantages including good electrical conductivity, mechanical properties as well as low melting temperature. However, Pb is very toxic and Pb usage poses risk to human health and environments. Owing to this, the usage of Pb in the electronic industry was banned and restricted by the legislation. These factors accelerate the efforts in finding suitable replacement for solder alloy and thus lead-free solder was introduced. The major problems associated with lead-free solder is the formation of large and brittle intermetallic compound which have given a rise to the reliability issues. Micro alloying with Sb seems to be advantageous in improving the properties of existing lead-free solder alloy. Thus, this paper reviews the influence of Sb addition to the lead-free solder alloy in terms of microstructure formations and thermal properties.
Go to article

Authors and Affiliations

Nur Syahirah Mohamad Zaimi
1
Mohd Arif Anuar Mohd Salleh
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Mohd Izrul Izwan Ramli
1

  1. Center of Excellence Geopolymer & Green Technology (CeGeoGTech), Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

To fabricate a lead-free solder with better properties, a surface-modified precipitate calcium carbonate (PCC) was added as a reinforcement phase to tin-zinc (Sn-9Zn) solder. The surface modification of PCC was done by using electroless plating to deposit nickel (Ni) layer on the PCC. Based on microstructure analysis, a thin layer of Ni was detected on the reinforcement particle, indicating the Ni-coated PCC was successfully formed. Next, composite solder of Sn-9Zn-xNi-coated PCC (x = 0, 0.25, 0.50, 1.00 wt.%) was prepared. The morphology and phase changes of the composite solder were evaluated by using optical microscope and X-ray diffraction (XRD). Significant refinement on the grain size of Zn was seen with the additions of Ni-coated PCC, with a new phase of Ni3Sn4 was detected along with the phases of Sn and Zn. The wettability of Sn-9Zn was also improved with the presence of Ni-coated PCC, where the wetting angle decreased from 28.3° to 19.4-23.2°. Brinell hardness test revealed up to 27.9% increase in hardness for the composite solder than the pristine Sn-9Zn solder. This phenomenon contributed by the increased in dislocation resistance through Zener pinning effect and Zn grain refinement within the composite solder which enhanced the overall properties of the composite solder.
Go to article

Authors and Affiliations

L.W. Keong
1
F.F. Zainal
1
ORCID: ORCID
M.Z. Kasmuin
1
A.A. Mohamad
2
M.F.M. Nazari
1
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
B. Jeż
4
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CEGeoGTech) 02600, Arau, Perlis, Malaysia
  2. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Advanced Soldering Materials Group, 14300 Nibong Tebal, Penang, Malaysia
  3. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  4. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, l9c Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more