Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For long time, Sn-Pb solder alloys have been used extensively as the main interconnection materials in the soldering. It is no doubt that Sn-Pb offers many advantages including good electrical conductivity, mechanical properties as well as low melting temperature. However, Pb is very toxic and Pb usage poses risk to human health and environments. Owing to this, the usage of Pb in the electronic industry was banned and restricted by the legislation. These factors accelerate the efforts in finding suitable replacement for solder alloy and thus lead-free solder was introduced. The major problems associated with lead-free solder is the formation of large and brittle intermetallic compound which have given a rise to the reliability issues. Micro alloying with Sb seems to be advantageous in improving the properties of existing lead-free solder alloy. Thus, this paper reviews the influence of Sb addition to the lead-free solder alloy in terms of microstructure formations and thermal properties.
Go to article

Authors and Affiliations

Nur Syahirah Mohamad Zaimi
1
Mohd Arif Anuar Mohd Salleh
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1
ORCID: ORCID
Mohd Izrul Izwan Ramli
1

  1. Center of Excellence Geopolymer & Green Technology (CeGeoGTech), Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

To fabricate a lead-free solder with better properties, a surface-modified precipitate calcium carbonate (PCC) was added as a reinforcement phase to tin-zinc (Sn-9Zn) solder. The surface modification of PCC was done by using electroless plating to deposit nickel (Ni) layer on the PCC. Based on microstructure analysis, a thin layer of Ni was detected on the reinforcement particle, indicating the Ni-coated PCC was successfully formed. Next, composite solder of Sn-9Zn-xNi-coated PCC (x = 0, 0.25, 0.50, 1.00 wt.%) was prepared. The morphology and phase changes of the composite solder were evaluated by using optical microscope and X-ray diffraction (XRD). Significant refinement on the grain size of Zn was seen with the additions of Ni-coated PCC, with a new phase of Ni3Sn4 was detected along with the phases of Sn and Zn. The wettability of Sn-9Zn was also improved with the presence of Ni-coated PCC, where the wetting angle decreased from 28.3° to 19.4-23.2°. Brinell hardness test revealed up to 27.9% increase in hardness for the composite solder than the pristine Sn-9Zn solder. This phenomenon contributed by the increased in dislocation resistance through Zener pinning effect and Zn grain refinement within the composite solder which enhanced the overall properties of the composite solder.
Go to article

Authors and Affiliations

L.W. Keong
1
F.F. Zainal
1
ORCID: ORCID
M.Z. Kasmuin
1
A.A. Mohamad
2
M.F.M. Nazari
1
ORCID: ORCID
M. Nabiałek
3
ORCID: ORCID
B. Jeż
4
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CEGeoGTech) 02600, Arau, Perlis, Malaysia
  2. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Advanced Soldering Materials Group, 14300 Nibong Tebal, Penang, Malaysia
  3. Częstochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Częstochowa, Poland
  4. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, l9c Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more