Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper we present the analysis of the gas usage for different types of buildings. First, we introduce the classical theory of building heating. This allows the establishment of theoretical relations between gas consumption time series and the outside air temperature for different types of buildings, residential and industrial. These relations imply dierent auto-correlations of gas usage time series as well as different cross-correlations between gas consumption and temperature time series for different types of buildings. Therefore, the autocorrelation and the cross-correlation were used to classify the buildings into three classes: housing, housing with high thermal capacity, and industry. The Hurst exponent was calculated using the global DFA to investigate auto-correlation, while the Kendall's τ rank coeficient was calculated to investigate cross-correlation.

Go to article

Authors and Affiliations

Krzysztof Domino
Przemysław Głomb
Zbigniew Łaskarzewski
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of an assessment of the potential for the use of CNG in Poland as a fuel for passenger cars powered by an internal combustion engine fuelled by petrol or diesel. The basis for assessing the potential was an analysis of the economic efficiency of converting a passenger car fuelled by petrol or diesel to a dual-fuel vehicle by installing a CNG system. On the basis of available literature data, the vehicle structure was characterised using the following criteria: vehicle age, engine capacity, car-segment, type of fuel used and kerb weight. The average fuel consumption (petrol or diesel) of the vehicle before conversion was determined on the basis of specially developed statistical models. The conversion and operating costs of a vehicle fuelled with conventional fuel and with CNG (after vehicle conversion) were estimated on the basis of a stochastic simulation model using probability density distributions of vehicle parameters and the Monte Carlo method. The vehicle parameters were estimated so that the obtained set of vehicles reflected the actual structure of passenger cars in Poland. The estimated costs of vehicle conversion (purchase and installation of a CNG system) and its subsequent operating costs made it possible to assess the economic efficiency of the car conversion process. The potential use of CNG as a fuel for combustion cars was estimated by comparing the operating costs of a vehicle before conversion and the operating costs of a vehicle after conversion, taking into account the costs of conversion. Analogous calculations were carried out for the conversion of a vehicle to run on LPG, i.e. the most important competitor to CNG.
Go to article

Authors and Affiliations

Dominik Kryzia
1
ORCID: ORCID
Monika Pepłowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen (H2) and liquid petroleum gas (LPG) sensing properties of SnO2 thin films obtained by direct oxidation of chemically deposited SnS films has been studied. The SnS film was prepared by a chemical technique called SILAR (Successive Ionic Layer Adsorption and Reaction). The sensor element comprises of a layer of chemically deposited SnO2 film with an overlayer of palladium (Pd) sensitiser. The Pd sensitiser layer was also formed following a chemical technique. The double layer element so formed shows significantly high sensitivity to H2 and LPG. The temperature variation of sensitivity was studied and the maximum sensitivity of 99.7% was observed at around 200°C for 1 vol% H2 in air. The response time to target gas was about 10 seconds and the sensor element was found to recover to its original resistance reasonably fast. The maximum sensitivity of 98% for 1.6 vol% LPG was observed at around 325°C. The sensor response and recovery was reasonably fast (less than one minute) at this temperature.

Go to article

Authors and Affiliations

P. Mitra
S. Mondal

This page uses 'cookies'. Learn more