Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

We propose the time slot routing, a novel routing scheme that allows for a simple design of interconnection networks. The simulative results show that the proposed scheme demonstrates optimal performance at the maximal uniform network load, and for uniform loads the network throughput is greater than for deflection routing.
Go to article

Authors and Affiliations

Ireneusz Szcześniak
Roman Wyrzykowski
Download PDF Download RIS Download Bibtex

Abstract

The effect of titanium nitride (TiN) thickness as the support layer for carbon nanotubes (CNTs) growth was investigated by depositing three different thicknesses: 20 nm, 50 nm and 100 nm. This TiN support layer was deposited on SiO2 pads before depositing nickel (Ni) as the catalyst material. The Ni distribution on different TiN thicknesses was studied under hydrogen environment at 600°C. Then, the samples were further annealed at 600°C in acetylene and hydrogen environment for CNTs growth. The results show that, the optimum TiN thickness was obtained for 50 nm attributed by the lowest D to G ratio (0.8).
Go to article

Authors and Affiliations

Muhammad M. Ramli
1 2
ORCID: ORCID
N.H. Osman
2 3
ORCID: ORCID
D. Darminto
4
ORCID: ORCID
M.M.A.B. Abdullah
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Electronic Engineering Technology, Perlis, Malaysia
  3. Universiti Putra Malaysia, Faculty of Science, Department of Physic, Applied Electromagnetic Laboratory, 43400 Serdang, Selangor, Malaysia
  4. Institut Teknologi Sepuluh Nopember, Faculty of Science and Analytical Data, Department of Physic, Campus ITS Sukolilo-Surabaya 60111, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Ensuring the security of power generation systems is a pillar of the proper functioning of each state. Energy security is fundamental to ensure both economic growth and social welfare. As energy storage has not developed in an efficient extent, covering the current and prospective power demand is a major challenge for transmission system operators. Moreover, the activities that are to be taken should be technically and economically justified and need to meet the requirements of environmental protection. Cooperation between neighboring countries in the field of electricity exchange is among the activities undertaken to ensure the safety of the power generation systems. The integration of electricity markets is one of the key challenges of the European Union’s energy policy. The European Commission issued a directive on interconnection, according to which the capacity of interconnections should total 10% of installed capacity until 2020 (and 15% until 2030) in each Member State. The main objective of this study is to assess the changes in electricity imports and exports in 2003–2018 and to investigate the current level of cross-border exchanges between Poland and the neighboring countries. This paper also answers the question of whether Poland will fulfil the obligations set by the European Commission. In addition, the paper presents the risks and the challenges related to fulfilling the mentioned commitments. The results of the study indicate that the development and modernization of network infrastructure in the field of cross-border exchange are necessary because, in the context of the forecasted increase in electricity demand, Polish generation units will not be able to meet the demand.

Go to article

Authors and Affiliations

Aleksandra Komorowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for electricity and global attention to the environment has led energy planners and developers to explore developing control techniques for energy stability. The primary objective function of this research in an interconnected electrical power system to increase the stability of the system with the proposed RRVR technique is evaluated in terms of the different constraints like THD (%), steady-state error (%), settling time (s), overshoot (%), efficiency (%) and to maintain the frequency at a predetermined value, and controlling the change of the power flow of control between the areas renewable energy generation (solar, wind, and fuel cell with battery management system) based intelligent grid system. To provide high-quality, reliable and stable electrical power, the designed controller should perform satisfactorily, that is, suppress the deviation of the load frequency. The performance of linear controllers on non-linear power systems has not yet been found to be effective in overcoming this problem. In this work, a fractional high-order differential feedback controller (FHODFC) is proposed for the LFC problems in a multi-area power system. The gains of FHODFC are best adjusted by resilience random variance reduction technique (RRVR) designed to minimize the overall weighted absolute error performance exponential time. Therefore, the controller circuit automatically adjusts the duty cycle value to obtain a desired constant output voltage value, despite all the grid system’s source voltage and load output changes. The proposed interconnected multi-generation energy generation topology is established in MATLAB 2017b software.
Go to article

Bibliography

  1.  E. Sahin, “Design of an Optimized Fractional High Order Differential Feedback Controller for Load Frequency Control of a Multi-Area Multi-Source Power System With Nonlinearity,” IEEE Access, vol. 8, pp. 12327‒12342, 2020, doi: 10.1109/ACCESS.2020.2966261.
  2.  B. Zhao et al., “Energy Management of Multiple Microgrids Based on a System of Systems Architecture,” in IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6410‒6421, Nov. 2018, doi: 10.1109/TPWRS.2018.2840055.
  3.  M. Nilsson, L.H. Söder, and G.N. Ericsson, “Balancing Strategies Evaluation Framework Using Available Multi-Area Data,” in IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1289‒1298, March 2018, doi: 10.1109/TPWRS.2017.2736604.
  4.  E. Tómasson and L. Söder, “Generation Adequacy Analysis of Multi-Area Power Systems With a High Share of Wind Power,” in IEEE Trans. Power Syst., vol. 33, no. 4, pp. 3854‒3862, July 2018, doi: 10.1109/TPWRS.2017.2769840.
  5.  B. Pan, W. Cong, M. Sun, J. Yu, and M. Zheng, “Fault location determination method for relay protection communication system based on power grid operation and maintenance multi-source data,” 2019 IEEE Sustainable Power and Energy Conference (iSPEC), Beijing, China, 2019, pp. 2351‒2356, doi: 10.1109/iSPEC48194.2019.8975178.
  6.  G. Liu, M. Vrakopoulou and P. Mancarella, “Assessment of the capacity credit of renewables and storage in multi-area power systems,” IEEE Trans. Power Syst., doi: 10.1109/TPWRS.2020.3034248.
  7.  R. Patel et al., “Enhancing Optimal Automatic Generation Control in a Multi-Area Power System With Diverse Energy Resources,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3465‒3475, Sept. 2019, doi: 10.1109/TPWRS.2019.2907614.
  8.  H. Chen et al., “Key Technologies for Integration of Multitype Renewable Energy Sources – Research on Multi-Timeframe Robust Scheduling/Dispatch,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 471‒480, Jan. 2016, doi: 10.1109/TSG.2015.2388756.
  9.  T.K. Mohapatra and B.K. Sahu, “Design and implementation of SSA based fractional order PID controller for automatic generation control of a multi-area, multi-source interconnected power system,” 2018 Technologies for Smart-City Energy Security and Power (ICSESP), Bhubaneswar, 2018, pp. 1‒6, doi: 10.1109/ICSESP.2018.8376697.
  10.  C. Wang, K. Jia, B. Liu, and J. Zhang, “Coordination Control and Protection for Photovoltaic DC Distribution System,” 2020 2nd International Conference on Smart Power & Internet Energy Systems (SPIES), Bangkok, Thailand, 2020, pp. 526‒530, doi: 10.1109/ SPIES48661.2020.9243132.
  11.  H. Zhang, B. Zhang, A. Bose, and H. Sun, “A Distributed Multi-Control-Center Dynamic Power Flow Algorithm Based on Asynchronous Iteration Scheme,” IEEE Trans. Power Syst., vol. 33, no. 2, pp. 1716‒1724, March 2018, doi: 10.1109/TPWRS.2017.2721405.
  12.  A. Khoaei, M. Shahidehpour, L. Wu, and Z. Li, “Coordination of Short-Term Operation Constraints in Multi-Area Expansion Planning,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2242‒2250, Nov. 2012, doi: 10.1109/TPWRS.2012.2192507.
  13.  D. Xu, J. Liu, X. Yan, and W. Yan, “A Novel Adaptive Neural Network Constrained Control for a Multi-Area Interconnected Power System With Hybrid Energy Storage,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6625‒6634, Aug. 2018, doi: 10.1109/TIE.2017.2767544.
  14.  A. Nassaj and S.M. Shahrtash, “An Accelerated Preventive Agent-Based Scheme for Postdisturbance Voltage Control and Loss Reduction,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4508‒4518, July 2018, doi: 10.1109/TPWRS.2017.2778098.
  15.  Y. Zhang, X. Liu,, and B. Qu, “Distributed model predictive load frequency control of multi-area power system with DFIGs,” IEEE/CAA J. Autom. Sin., vol. 4, no. 1, pp. 125‒135, Jan. 2017, doi: 10.1109/JAS.2017.7510346.
  16.  G. Tang, Z. Xu, H. Dong and Q. Xu, “Sliding Mode Robust Control Based Active-Power Modulation of Multi-Terminal HVDC Transmissions,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1614‒1623, March 2016, doi: 10.1109/TPWRS.2015.2429690.
  17.  C. Zhong, J. Zhang, and Y. Zhou, “Adaptive Virtual Capacitor Control for MTDC System With Deloaded Wind Power Plants,” IEEE Access, vol. 8, pp. 190582‒190595, 2020, doi: 10.1109/ACCESS.2020.3032284.
  18.  M. Kahl, C. Freye, and T. Leibfried, “A Cooperative Multi-Area Optimization With Renewable Generation and Storage Devices,” IEEE Trans. Power Syst., vol. 30, no. 5, pp. 2386‒2395, Sept. 2015, doi: 10.1109/TPWRS.2014.2363762.
  19.  J. Zhao et al., “A Multi-Source Coordinated Optimal Operation Model Considering the Risk of Nuclear Power Peak Shaving and Wind Power Consumption,” IEEE Access, vol. 8, pp.  189702‒189719, 2020, doi: 10.1109/ACCESS.2020.3027705.
  20.  W. Wang, L. Jiang, Y. Cao, and Y. Li, “A Parameter Alternating VSG Controller of VSC-MTDC Systems for Low-Frequency Oscillation Damping,” IEEE Trans. Power Syst., vol. 35, no. 6, pp. 4609‒4621, Nov. 2020, doi: 10.1109/TPWRS.2020.2997859.
  21.  T. Yang, S. Bozhko, J. Le-Peuvedic, G. Asher, and C.I. Hill, “Dynamic Phasor Modeling of Multi-Generator Variable Frequency Electrical Power Systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp.  563‒571, Jan. 2016, doi: 10.1109/TPWRS.2015.2399371.
  22.  P.M. Dash, S.K. Mohapatra, and A.K. Baliarsingh, “Tuning of LFC in Multi-source Electrical Power Systems Implementing Novel Nature- Inspired MFO Algorithm Based Controller Parameter,” 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, Odisha, India, 2020, pp. 1‒5, doi: 10.1109/CISPSSE49931.2020.9212199.
  23.  F. Qi, M. Shahidehpour, F. Wen, Z. Li, Y. He, and M. Yan, “Decentralized Privacy-Preserving Operation of Multi-Area Integrated Electricity and Natural Gas Systems With Renewable Energy Resources,” IEEE Trans. Sustainable Energy, vol. 11, no. 3, pp. 1785‒1796, July 2020, doi: 10.1109/TSTE.2019.2940624.
  24.  X.S. Zhang, T. Yu, Z.N. Pan, B. Yang, and T. Bao, “Lifelong Learning for Complementary Generation Control of Interconnected Power Grids With High-Penetration Renewables and EVs,” IEEE Trans. Power Syst., vol. 33, no. 4, pp. 4097‒4110, July 2018, doi: 10.1109/ TPWRS.2017.2767318.
  25.  A. Khanjanzadeh, S. Soleymani, and B. Mozafari, “A decentralized control strategy to bring back frequency and share reactive power in isolated microgrids with virtual power plant,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, No. 1, pp. 1‒9, 2021, doi: 10.24425/ bpasts.2021.136190.
  26.  M. Parol and M. Polecki, “The performance of passive methods of detecting island operation implemented in PV inverters during selected disturbances in distribution power grids,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 5, pp. 1087‒1098, 2020. doi: 10.24425/ bpasts.2020.134658.
  27.  A. Bobori, S. Paszek, A. Nocori, and P. Pruski, “Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 65, no. 4, pp. 479‒488, 2017, doi: 10.1515/ bpasts-2017-0053.
  28.  G. Benysek, “Improvement in the efficiency of the distributed power systems,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 57, no. 4, pp. 369‒374, 2009, doi: 10.2478/v10175-010-0140-1.
  29.  H. Rezk, M.A. Mohamed, A.A. Zaki Diab, and N. Kanagaraj, “Load Frequency control of Multi-interconnected Renewable Energy Plants using Multi-Verse Optimizer,” Comput. Syst. Sci. Eng., vol. 37, no. 2, pp. 219‒231, 2021, doi: 10.32604/csse.2021.015543.
  30.  H. Sun, C. Peng, D. Yue, Y.L. Wang, and T. Zhang, “Resilient Load Frequency Control of Cyber-Physical Power Systems Under QoS- Dependent Event-Triggered Communication,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 51, no. 4, pp. 2113‒2122, doi: 10.1109/ TSMC.2020.2979992.
  31.  E. Canelas, T. Pinto-Varela, and B. Sawik, “Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study,” Energies, vol. 13, no. 9, p. 2249, 2020, doi: 10.3390/en13092249.
Go to article

Authors and Affiliations

B. Prakash Ayyappan
1
R. Kanimozhi
2

  1. Department of Electrical and Electronics Engineering, V.S.B Engineering College, Karur and Research Scholar (Electrical), Anna University, Chennai, Tamilnadu, India
  2. Department of Electrical and Electronics Engineering, University College of Engineering, Anna University-BIT Campus, Tiruchirapalli, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

Soft-switching technologies can effectively solve the problem of switching losses caused by increasing switching frequency of grid-connected inverters. As a branch of soft-switching technologies, load-side resonant soft-switching is a hotspot for applications of high-frequency inverters, because it has the advantage of achieving soft-switching without using additional components. However, the traditional PI control strategy based on the linear model is prone to destabilization and non-robust dynamic performance when large signal perturbation occurs. In this paper, a novel Passivity-Based Control (PBC) method is proposed to improve the dynamic performance of load-side resonant soft-switching grid-connected inverter. Besides, the model based on the Port Controlled Hamiltonian (PCH) model of the soft switching inverter is carried out, and the passivity-based controller is designed based on the established model using the way of interconnection and damping assignmentpassivity based control (IDA-PBC). Both stable performance and dynamic performance of the load-side resonant soft-switching inverter can be improved over the whole operating range. Finally, a 750 W load-side resonant soft-switching inverter simulation model is built and the output performance is compared with the traditional PI control strategy under stable and dynamic conditions. The simulation results show that the proposed control strategy reduces the harmonic distortion rate and improves the quality of the output waveforms.
Go to article

Authors and Affiliations

Yajing Zhang
1
Huanchen Zhang
1
Jianguo Li
1
Jiuhe Wang
1

  1. School of Automation, Beijing Information Science & Technology University No.12 Qinghe Xiaoying East Road, Haidian District, Beijing, China
Download PDF Download RIS Download Bibtex

Abstract

Power loss mechanisms in small area monolithic-interconnected photovoltaic modules (MIM) are described and evaluated. Optical and electrical losses are quantified and individual loss components are derived for loss mechanisms of small area radial (radius = 1 mm) pie-shaped six-segment GaAs MIM laser power converter. At low monochromatic homogeneous illumination (Glow = 1.8 W/cm2, λ0 = 809 nm) conversion efficiency of the cell, designed for a low irradiance, is reduced by 3.7%abs. due to isolation trench optical losses and by 7.0%abs. due to electrical losses (mainly perimeter recombination). Electrical losses in a device designed for a high irradiance, result in 18%abs. decrease of output power under homogeneous monochromatic illumination (Ghigh = 83.1 W/cm2, λ0 = 809 nm), while 11.6%abs. losses are attributed to optical reasons. Regardless the irradiance level, optical losses further increase if the device is illuminated with a Gaussian instead of an ideal flattop beam profile. In this case, beam spillage losses occur and losses due to isolation trenches and reflections from metallization are elevated. On top of that, additional current mismatch losses occur, if individual MIM’s segments are not equally illuminated. For the studied device, a 29 μm off center misalignment of a Gaussian shaped beam (with 1% spillage) reduces the short circuit current Isc by 10%abs. due to the current mismatch between segments.

Go to article

Authors and Affiliations

R. Kimovec
H. Helmers
A.W. Bett
M. Topič

This page uses 'cookies'. Learn more