Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The intercalation into interlayer spaces of montmorillonite (MMT), obtained from natural calcium bentonite, was investigated. Modification of MMT was performed by the poly(acrylic acid-co-maleic acid) sodium salt (co-MA/AA). Efficiency of modification of MMT by sodium salt co-MA/AA was assessed by the infrared spectroscopic methods (FTIR), X-ray diffraction method (XRD) and spectrophotometry UV-Vis. It was found, that MMT can be relatively simply modified with omitting the preliminary organofilisation – by introducing hydrogel chains of maleic acid-acrylic acid copolymer in a form of sodium salt into interlayer galleries. A successful intercalation by sodium salt of the above mentioned copolymer was confirmed by the powder X-ray diffraction (shifting the reflex(001) originated from the montmorillonite phase indicating an increase of interlayer distances) as well as by the infrared spectroscopy (occurring of vibrations characteristic for the introduced organic macromolecules). The performed modification causes an increase of the ion exchange ability which allows to assume that the developed hybrid composite: MMT-/maleic acid-acrylic acid copolymer (MMT-co- MA/AA) can find the application as a binding material in the moulding sands technology. In addition, modified montmorillonites indicate an increased ability for ion exchanges at higher temperatures (TG-DTG, UV-Vis). MMT modified by sodium salt of maleic acid-acrylic acid copolymer indicates a significant shifting of the loss of the ion exchange ability in the direction of the higher temperature range (500–700°C).

Go to article

Authors and Affiliations

B. Grabowska
S. Cukrowicz
Ż. Kurleto-Kozioł
K. Kaczmarska
D. Drożyński
M. Sitarz
A. Bobrowski
Download PDF Download RIS Download Bibtex

Abstract

In this study, the electrospray deposition (ESD) method was used to deposit carbon nanotubes (CNT) onto the surfaces of carbon fibers (CF) in order to produce hybrid carbon fiber-carbon nanotubes (CF-CNT) which is rarely reported in the past. Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), high-resolution transmission electron microscopy (HRTEM) and x-ray photoelectron spectroscopy (XPS) were used to analyse the hybrid carbon fiber-carbon nanotube (CF-CNT). The results demonstrated that CNT was successfully and homogenously distributed on the CF surface. Hybrid CF-CNT was then prepared and compared with CF without CNT deposition in terms of their tensile properties. Statistically, the tensile strength and the tensile modulus of the hybrid CF-CNT were increased by up to 3% and 25%, respectively, as compared to the CF without CNT deposition. The results indicated that the ESD method did not cause any reduction of tensile properties of hybrid CF-CNT. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on CF based products.
Go to article

Authors and Affiliations

Muhammad Razlan Zakaria
1 2
ORCID: ORCID
Hazizan Md Akil
3
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
2
ORCID: ORCID
M. Nabiałek
4
ORCID: ORCID
J.J. Wysłocki
4
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis, Geopolymer & Green Technology, Centre of Excellent (CEGeoGTech) Perlis, Malaysia
  3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  4. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Herein, the effects of multi-walled carbon nanotubes (CNTs) on the mechanical and dielectric performance of hybrid carbon nanotube-woven glass fiber (GF) reinforced epoxy laminated composited are investigated. CNTs are deposited on woven GF surface using an electrospray deposition method which is rarely reported in the past. The woven GF deposited with CNT and without deposited with CNT are used to produce epoxy laminated composites using a vacuum assisted resin transfer moulding. The tensile, flexural, dielectric constant and dielectric loss properties of the epoxy laminated composites were then characterized. The results confirm that the mechanical and dielectric properties of the woven glass fiber reinforced epoxy laminated composited increases with the addition of CNTs. Field emission scanning electron microscope is used to examine the post damage analysis for all tested specimens. Based on this finding, it can be prominently identified some new and significant information of interest to researchers and industrialists working on GF based products.
Go to article

Authors and Affiliations

Muhammad Razlan Zakaria
1 2
ORCID: ORCID
Nur Aishahatul Syafiqa Mohammad Khairuddin
3
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
Hazizan Md Akil
3
ORCID: ORCID
Muhammad Bisyrul Hafi Othman
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
2
ORCID: ORCID
Sam Sung Ting
1 2
ORCID: ORCID
Azida Azmi
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellent (CEGeoGTech), Perlis, Malaysia
  3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  4. Universiti Sains Malaysia, School of Chemical Sciences, 11800 Minden, Penang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The introduction of carbon nanotubes (CNTs) onto glass fibre (GF) to create a hierarchical structure of epoxy laminated composites has attracted considerable interest due to their merits in improving performance and multifunctionality. Field emission scanning electron microscopy (FESEM) was used to analyze the woven hybrid GF-CNT. The results demonstrated that CNT was successfully deposited on the woven GF surface. Woven hybrid GF-CNT epoxy laminated composites were then prepared and compared with woven GF epoxy laminated composites in terms of their tensile properties. The results indicated that the tensile strength and tensile modulus of the woven hybrid GF-CNT epoxy laminated composites were improved by up to 9% and 8%, respectively compared to the woven hybrid GF epoxy laminated composites.
Go to article

Authors and Affiliations

Muhammad Razlan Zakaria
1 2
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
Hazizan Md Akil
3
ORCID: ORCID
Muhammad Bisyrul Hafi Othman
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellent (CEGeoGTech), Perlis, Malaysia
  3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  4. Universiti Sains Malaysia, School of Chemical Sciences, 11800 Minden, Penang, Malaysia

This page uses 'cookies'. Learn more