Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Over the past decades, using of sustainable materials in construction is a challenging issue, thus Fibre Reinforced Polymers (FRP) took the attention of civil and structural engineers for its lightweight and high-strength properties. The paper describes the results of the shear strength testing of three different types of bars: (i) basalt- FRP (BFRP), (ii) hybrid FRP with carbon and basalt fibres (HFRP) and (iii) nano-hybrid FRP (nHFRP), with modification of the epoxy matrix of the bar. The hybridization of carbon and basalt fibres lead to more costefficient alternative than Carbon FRP (CFRP) bars and more sustainable alternative than Basalt FRP (BFRP) bars. The BFRP, HFRP and nHFRP bars with different diameters ranging from Ø4 to Ø18 mm were subjected to shear strength testing in order to investigate mechanical properties and the destruction mechanism of the bars. Obtained results display a slight downward trend as the bar diameter increase, which is the most noticeable for HFRP bars. In most of the cases, BFRP bars were characterized by greater shear deformation and less shear strength compared to HFRP and nHFRP bars. Performed testing may contribute to comprehensive understanding of the mechanical behavior of those types of FRP bars.
Go to article

Authors and Affiliations

Kostiantyn Protchenko
1
ORCID: ORCID
Fares Zayoud
2
ORCID: ORCID
Marek Urbański
3
ORCID: ORCID

  1. MSc., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. BSc., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  3. PhD., Eng., Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The widespread use of Fibre-Reinforced Polymers (FRP) reinforced concrete (RC) structural members is hindered by their low fire resistant characteristics, limiting their use to cases, where fire resistance is not a priority. Presented and discussed are experimental results pertaining to the flexural members subjected to heating and simultaneous loading. Solely non-metallic FRP bars: (i) Basalt FRP (BFRP), (ii) Hybrid FRP (HFRP) with carbon and basalt fibres and (ii) nano-Hybrid FRP (nHFRP) with modified epoxy resin, were used as internal reinforcement for beams. The destruction of the beams was caused in different ways, beams reinforced with BFRP bars were destroyed by reinforcement failure while those reinforced with hybrid FRP bars were destroyed by concrete crushing. The BFRP reinforced beams obtained a maximum temperature, measured directly on the bars, of 917 °C, compared to beams reinforced with hybrid FRP bars, where the temperature on the bars reached 400-550 °C at failure. Moreover, the highest registered ductility was obtained for BFRP reinforced beams as well, where the maximum deflections reached approximately 16 cm.

Go to article

Authors and Affiliations

Kostiantyn Protchenko
ORCID: ORCID
Marek Urbański
ORCID: ORCID

This page uses 'cookies'. Learn more