Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A huge isolated accumulation, more than 3 m thick and 10 m wide, of densely packed, uncrushed brachiopods has been found in Józefka Quarry within the Middle/Upper Devonian Szydłówek Beds deposited in a relatively deep environment of an intrashelf basin (Kostomłoty facies zone, western Holy Cross Mountains, Poland). The low-diversity assemblage is strongly dominated by the atrypide Desquamatia globosa jozefkae Baliński subsp. nov. and, to a lesser degree, by the rhynchonellide Coeloterorhynchus dillanus (Schmidt, 1941), which constitute 72.8% and 22.1% of the fauna, respectively. Less frequent are specimens representing the genera Hypothyridina, Schizophoria and Phlogoiderynchus. According to the conodont fauna found within the coquina bed, the stratigraphic position of the shell accumulation is close to the Givetian/ Frasnian boundary. The brachiopods are associated with numerous crinoids and less frequent bryozoans, receptaculitids (Palaeozoic problematica), sponges and solitary corals. Although it is difficult to entirely exclude the autochthonous nature of the brachiopod coquina member, its allochthonous origin and redeposition of the brachiopod shells to the deep basin by gravity flows is much more probable. Such conclusion is supported by the following facts: (1) the position of the complex in a succession of deep-marine basinal facies impoverished in oxygen; (2) its lateral thinning-out and composite internal stratification; (3) the lensshaped geometry of the coquina bed in the section perpendicular to the bedding dip; (4) high variability of the sediments preserved within the shells; and (5) the preferred orientation of the shells. The brachiopods mixed with crinoidal debris were probably transported by low-velocity, high-density, gravity-induced debris flows. Lack of fossils typical of the Middle Devonian shallows, such as massive stromatoporoids, amphiporoids and tabulates, indicates that the source area of the bioclastic material was not located in the shallowest part of the shelf, but most probably on a submarine sea-mount to the north of present-day Józefka, as suggested by earlier investigators. The triggering mechanism of the allochthonous deposition was an earthquake rather than storm activity. The enormous thickness of the brachiopod complex is probably caused by the sinking of bioclastic material, transported in succeeding depositional multi-events, in a soft, muddy bottom, typical of the Szydłówek Beds deposition.

Go to article

Authors and Affiliations

Stanisław Skompski
Andrzej Baliński
Michał Szulczewski
Inga Zawadzka
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to reconstruct the location mechanism of a Triassic sandstone wedge within folded Palaeozoic rocks. A vertically oriented Buntsandstein succession (Lower Triassic) from Józefka Quarry (Holy Cross Mountains, central Poland), steeply wedged within folded Devonian carbonates, is recognised as an effect of normal faulting within a releasing stepover. The sandstone succession, corresponding to the Zagnańsk Formation in the local lithostratigraphic scheme, is represented by two complexes, interpreted as deposits of a sand-dominated alluvial plain (older complex), and coarse-grained sands and gravels of a braided river system (younger complex). The sandstone complex was primarily formed as the lowermost part of the several kilometres thick Mesozoic cover of the Holy Cross Mountains Fold Belt (HCFB), later eroded as a result of the Late Cretaceous/Paleogene uplift of the area. Tectonic analysis of the present-day position of the deformed sandstone succession shows that it is fault-bounded by a system of strike-slip and normal faults, which we interpret as a releasing stepover. Accordingly, the formation of the stepover in the central part of the late Palaeozoic HCFB is evidence of a significant role of strike-slip faulting within this tectonic unit during Late Cretaceous/Paleogene times. The faulting was probably triggered by reactivation of the terminal Palaeozoic strike-slip fault pattern along the western border of the Teisseyre–Tornquist Zone.

Go to article

Authors and Affiliations

Stanisław Skompski
Andrzej Konon
Anna Wysocka
Urszula Czarniecka
Download PDF Download RIS Download Bibtex

Abstract

According to the current state of research five sand-gravel accumulation levels of Quaternary age are visible in the morphology of the western part of the Holy Cross Mountains, within the Wierna Rzeka, Hutka and Bobrza river valley systems and the lower stretches of the Biała Nida and Czarna Nida river valleys. Two upper levels (V and IV) correspond to valleys formed during the Odranian Glaciation-Saalian, MIS6 and its reccesional phases under the influence of proglacial and extraglacial waters beyond the extent (to the east) of the maximal ice-sheet limit of this glaciation, reaching to the present-day Leśnica-Gnieździska-Łopuszno line. Two lower levels (III and II) are terraces that were typically formed during the climatic conditions thatprevailed during Vistulian stadials. Sands and gravels of the three upper levels (V−III) contain numerous debris flow deposits and cryoturbation structures documenting periglacial conditions during their accumulation. The lowermost level (I) is a typical Holocene floodplain.

Go to article

Authors and Affiliations

Jan Dzierżek
Leszek Lindner
Krzysztof Cabalski
Download PDF Download RIS Download Bibtex

Abstract

The taxonomy of simply deformed paradoxidids from the Miaolingian (Cambrian) of Słowiec Hill, Holy Cross Mountains, Poland, is revised based on morphometric analysis. The material represents two species: Acadoparadoxides slowiecensis (Czarnocki in Orłowski, 1965) and Hydrocephalus? polonicus (Czarnocki in Orłowski, 1965). A new assemblage zone based on the combined although not precisely known ranges of these two taxa is suggested replacing the previous Paradoxides polonicus Zone of Orłowski (1975, 1988, 1992a). The Acadoparadoxides slowiecensis–Hydrocephalus? polonicus Assemblage Zone corresponds to the middle and upper part of the Wuliuan Stage (lower Miaolingian).
Go to article

Bibliography

Adams, D.C., Collyer, M., Kaliontzopoulou, A. and Baken, E. 2016. Package ‘geomorph’. Software for geometric morphometric analyses for 2D/3D landmark data. Available at: http://cran.r-project.org/packages/geomorph/index.html.
Adams, D.C. and Otárola-Castillo, E. 2013. geomorph: an R Package for the collection and analysis of geometric morphometric shape data. Methods in ecology and evolution, 4, 393–399.
Aleksandrowski, P. and Mazur, S. 2017. On the new tectonic solutions in ‘Geological Atlas of Poland’. Przegląd Geologiczny, 65, 1499–1510. [In Polish with English abstract]
Angelin, N.P. 1854. Palaeontologia Scandinavica. Pars I: Crustacea Formationis Transitionis. Fasc. II, 21–92. T.O. Weigel; Leipzig (“Lipsiae”).
Angielczyk, K.D. and Sheets, H.D. 2007. Investigation of simulated tectonic deformation in fossils using geometric morphometrics. Paleobiology, 33, 125–148.
Asklund, B. and Thorslund, P. 1935. Fjällkedjerandens bergbyggnad i norra Jämtland och Ångermanland. Sveriges Geologiska Undersökning C, 382, 1–110.
Axheimer, N. and Ahlberg, P. 2003. A core drilling through Cambrian strata at Almbacken, Scania, S. Sweden: trilobites and stratigraphical assessment. GFF, 125, 139–156.
Barrande, J. 1846. Notice Préliminaire sur le Systême Silurien et les Trilobites de Bohême, 97 pp. C.L. Hirschfeld; Leipzig (“Leipsic”).
Barrande, J. 1852. Systême Silurien du Centre de la Bohême, 935 pp. Private edition by J. Barrande; Prague, Paris.
Bednarczyk, W., Lendzion, K. and Orłowski, S. 1990. Rodzina Paradoxididae Hawle et Corda, 1847. In: Pajchlowa, M. (Ed.), Budowa geologiczna Polski. Tom III. Atlas skamieniałości przewodnich i charakterystycznych. Część 1a. Paleozoik starszy (z proterozoikiem górnym). Ryfej, Wend, Kambr, 58–61. Wydawnictwa Geologiczne; Warszawa.
Belka, Z., Valverde-Vaquero, P., Dörr, W., Ahrendt, H., Wemmer, K., Franke, W. and Schäfer, J. 2002. Accretion of first Gondwana- derived terranes at the margin of Baltica. In: Winchester, J.A., Pharaoh, T.C. and Verniers, J. (Eds), Palaeozoic Amalgamation of Central Europe. Special Publications of the Geological Society of London, 201, 19–36.
Berg-Madsen, V. 1981. The Middle Cambrian Kalby and Borregård Members of Bornholm, Denmark. Geologiska Föreningens i Stockholm Förhandlingar, 103, 215–231.
Berthelsen, A. 1992. From Precambrian to Variscan Europe. In: Blundell, D., Freeman, R. and Müller, S. (Eds), A Continent Revealed: The European Geotraverse, 153–164. Cambridge University Press; Cambridge.
Boeck, C.P.B. 1827. Notizer til Læren om trilobiterne. Magazin for Naturvidenskaberne, 8 (1), 11–44.
Brøgger, W.C. 1878. Om paradoxidesskiferene ved Krekling. Nyt Magazin for Natursvidenskaberne, 24, 18–88.
Brongniart, A. 1822. Les Trilobites. In: Brongniart, A. and Desmarest A.-G., Histoire naturelle des crustacés fossiles, sous les rapports zoologiques et géologiques, 1–65. F.-G. Levrault; Paris.
Czarnocki, J. 1919. Stratygrafja i tektonika Gór Świętokrzyskich. Prace Towarzystwa Naukowego Warszawskiego, 28, 1–172.
Czarnocki, J. 1927a. Kambr i jego fauna w środkowej części Gór Świętokrzyskich. Sprawozdania Państwowego Instytutu Geologicznego, 4 (1/2), 189–208.
Czarnocki, J. 1927b. Le Cambrien et la faune cambrienne de la partie moyenne du massif de Swiety Krzyz (Ste Croix). Congrès Geológique International, Compte-rendue de la XIVe session, en Espagne, 1926, Madrid, 735–750.
Czarnocki, J. 1933. Odsłonięcia kambru okolic Ociesęk i Orłowin jako zabytek w znaczeniu naukowem. Zabytki Przyrody Nieożywionej, 2, 78–85.
Dean, W.T. and Rushton, A.W.A. 1997. Superfamily Paradoxidoidea Hawle and Corda, 1847. In: Kaesler, R.L. (Ed.), Treatise on Invertebrate Paleontology, Part O, Arthropoda 1, Trilobita, Revised, volume 1: Introduction, Order Agnostida, Order Redlichiida, 470–481. Geological Society of America and University of Kansas Press; Boulder and Lawrence.
Fletcher, T.P. 2007. Correlating the zones of ‘Paradoxides hicksii’ and ‘Paradoxides davidis’ in Cambrian Series 3. Memoirs of the Association of Australasian Palaeontologists, 33, 35–56.
Geyer, G. 1998. Intercontinental, trilobite-based correlation of the Moroccan early Middle Cambrian. Canadian Journal of Earth Sciences, 35, 374–401.
Geyer, G. 2019. A comprehensive Cambrian correlation chart. Episodes, 42 (4), 321–332.
Geyer, G. and Landing, E. 2001. Middle Cambrian of Avalonian Massachusetts: stratigraphy and correlation of the Braintree trilobites. Journal of Paleontology, 75, 116–135.
Geyer, G., Nowicki, J., Żylińska, A. and Landing, E. 2019. Comment on: Álvaro, J.J., Esteve, J. & Zamora, S. 2019. Morphological assessment of the earliest paradoxidid trilobites (Cambrian Series 3) from Morocco and Spain [Geological Magazine]. Geological Magazine, 156, 1691–1707.
Geyer, G. and Vincent, T. 2015. The Paradoxides puzzle resolved: the appearance of the oldest paradoxidines and its bearing on the Cambrian Series 3 lower boundary. Paläontologische Zeitschrift, 89, 335–398.
Green, J. 1834. Descriptions of some new North American trilobites. American Journal of Science, 25, 334–337.
Gürich, G. 1892. Ueber eine cambrische Fauna von Sandomir in Russisch-Polen. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1892 (1), 69–70.
Haber, A. 2011. OSymm. Available at: http://life.bio.sunysb.edu/morph/morphmet/OSymm.R.
Hawle, I. and Corda, A.J.C. 1847. Prodrom einer Monographie der böhmischen Trilobiten, Königliche Böhmische Gesellschaft der Wissenschaften, Abhandlungen, 5, 1–176.
Henningsmoen, G. 1952. Early Middle Cambrian fauna from Rogaland, SW Norway (Paradoxides oelandicus stage = 1c a). Norsk Geologisk Tidsskrift, 30, 13–32.
Hughes, N.C. and Jell, P.A. 1992. A statistical/computer-graphic technique for assessing variation in tectonically deformed fossils and its application to Cambrian trilobites from Kashmir. Lethaia, 25, 317–330.
Jendryka-Fuglewicz, B. 1992. Comparative analysis of brachiopods from the Cambrian deposits of the Holy Cross Mountains and the Precambrian Platform in Poland. Przegląd Geologiczny, 40, 150–155. [In Polish]
Klingenberg, C.P., Barluenga, M. and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution; International Journal of Organic Evolution, 56, 1909–1920.
Kobayashi, T. 1935. The Cambro-Ordovician formations and faunas of South Chosen. Palaeontology. Part III. Cambrian fauna of South Chosen with a special study of the Cambrian trilobite genera and families. Journal of the Faculty of Science, Imperial University of Tokyo, section 2, 4, 49–344.
Konon, A. 2008. Tectonic subdivision of Poland: Holy Cross Mountains and adjacent areas. Przegląd Geologiczny, 56, 921–926. [In Polish with English abstract]
Kordule, V. 1990. Rejkocephalus, a new paradoxidid genus from the Middle Cambrian of Bohemia (Trilobita). Věstník Ústředního Ústavu Geologického, 65, 55–60.
Kowalczewski, Z., Żylińska, A. and Szczepanik, Z. 2006. Kambr w Górach Świętokrzyskich. In: Skompski, S. and Żylińska, A. (Eds), 77 Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Ameliówka k. Kielc 28–30 czerwca 2006 r., 14–27. Wydawnictwa Geologiczne; Warszawa.
Liñán, E. and Gozalo, R. 1986. Trilobites del Cámbrico inferior y medio de Murero (Cordillera Ibérica). Memorias del Museo Paleontológico de la Universidad de Zaragoza, 2, 1–104.
Linnarsson, J.G.O. 1869. Om Vestergötlands cambriska och siluriska aflagringar. Kungliga Vetenskaps-Akademiens Handlingar, 8 (2), 1–89.
Linnarsson, J.G.O. 1876. On the Brachiopoda of the Paradoxides Beds of Sweden. Bihang till Kungliga Svenska Vetenskaps-Akademiens Handlingar, 3 (12), 1–34.
Masiak, M. and Żylińska, A. 1994. Burgess Shale-type fossils in Cambrian sandstones of the Holy Cross Mountains. Acta Palaeontologica Polonica, 39, 329–340.
Matthew, G.F. 1887. Illustrations of the fauna of the St. John Group. No. IV. On the smaller-eyed trilobites of Division I, with a few remarks on the species of the higher divisions of the group. Canadian Record of Science, 2, 357–363.
Minchin, P.R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio, 69, 89–107.
Nawrocki, J., Dunlap, J., Pecskay, Z., Krzemiński, L., Żylińska, A., Fanning, M., Kozłowski, W., Salwa, S., Szczepanik, Z. and Trela, W. 2007. Late Neoproterozoic to Early Palaeozoic palaeogeography of the Holy Cross Mountains (Central Europe): an integrated approach. Journal of the Geological Society, London, 164, 405–423.
Nielsen, A.T. and Ahlberg, P. 2019. The Miaolingian, a new name for the ‘Middle’ Cambrian (Cambrian Series 3): identification of lower and upper boundaries in Baltoscandia. GFF, 141, 162–173.
Nielsen, A.T. and Schovsbo, N.H. 2006. Cambrian to basal Ordovician lithostratigraphy in southern Scandinavia. Bulletin of the Geological Society of Denmark, 53, 47–92.
Nowicki, J. 2015. morphoutils – utility functions for geometric morphometrics. Available at: https://github.com/jakubnowicki/morphoutils.
Nowicki, J. 2016. Taxonomic revision of the Cambrian trilobite family Paradoxididae Hawle et Corda, 1847 from the Holy Cross Mountains (Poland) with the application of morphometric analysis, 192 pp. Unpublished Doctoral Thesis, University of Warsaw. [In Polish]
Nowicki, J. and Żylińska, A. 2019. The first occurrence of the earliest species of Acadoparadoxides outside Gondwana (Cambrian; Holy Cross Mountains, Poland). Geological Magazine, 156, 1027–1051.
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E. and Wagner, H. 2016. vegan: Community Ecology Package. Available at: https://cran.r-project.org/web/packages/vegan/ index.html.
Orłowski, S. 1957. On the presence of Paradoxides ölandicus Beds in the Holy Cross Mountains. Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 5, 769–772.
Orłowski, S. 1959a. Paradoxidae from lower Middle Cambrian Strata in the vicinity of Sandomierz (Central Poland). Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 7, 441–446.
Orłowski, S. 1959b. Ellipsocephalidae from the Lower Beds of the Middle Cambrian in the Vicinity of Sandomierz (Central Poland). Bulletin de l’Académie Polonaise des Sciences, Série des sciences chimiques, géologiques et géographiques, 7, 515–520.
Orłowski, S. 1964. Middle Cambrian and its fauna in the eastern part of the Holy Cross Mts. Studia Geologica Polonica, 16, 5–94. [In Polish with English abstract]
Orłowski, S. 1965. A revision of the Middle Cambrian fauna from the Słowiec Hill (Holy Cross Mountains). Biuletyn Geologiczny UW, 6, 136–146. [In Polish with extensive English abstract]
Orłowski, S. 1975. Cambrian and Upper Precambrian lithostratigraphic units of the Holy Cross Mts. Acta Geologica Polonica, 25, 431–448. [In Polish with English abstract]
Orłowski, S. 1985. New data on the Middle Cambrian trilobites and stratigraphy in the Holy Cross Mts. Acta Geologica Polonica, 35, 251–263.
Orłowski, S. 1988. Stratigraphy of the Cambrian system in the Holy Cross Mts. Kwartalnik Geologiczny, 32, 525–532.
Orłowski, S. 1989. Trace fossils in the Lower Cambrian sequence in the Świętokrzyskie Mountains, Central Poland. Acta Palaeontologica Polonica, 34, 211–231.
Orłowski, S. 1992a. Cambrian stratigraphy and stage subdivision in the Holy Cross Mountains, Poland. Geological Magazine, 129, 471–474.
Orłowski, S. 1992b. Trilobite trace fossils and their stratigraphical significance in the Cambrian sequence of the Holy Cross Mountains, Poland. Geological Journal, 27, 15–34.
Özdikmen, H. 2009. Nomenclatural changes for twenty trilobites genera. Munis Entomology & Zoology, 4, 155–171. R Core Team, 2016. R: A Language and Environment for Statistical Computing. Available at: http://www.r-project.org.
Richter, R. 1932. Crustacea (Paläontologie). In: Dittler, R., Joos, G., Korschelt, E., Linck, G., Oltmanns, F. and Schaum, K. (Eds), Handwörterbuch der Naturwissenschaften, Zweite Auflage, 840–864. Gustav Fischer; Jena.
Rohlf, F.J. 2016. TPS software series. Available at: http://life.bio.sunysb.edu/morph/.
Rushton, A.W.A. 2006. Revision of the middle Cambrian trilobite Paradoxides jemtlandicus. Geological Magazine, 143, 771–776.
Rushton, A.W.A. and Weidner, T.R. 2007. The Middle Cambrian paradoxidid trilobite Hydrocephalus from Jämtland, central Sweden. Acta Geologica Polonica, 57, 391–401.
Rushton, A.W.A., Weidner, T. and Ebbestad, J.O.R. 2016. Paradoxidid trilobites from a mid-Cambrian (Series 3, stage 5) limestone concretion from Jämtland, central Sweden. Bulletin of Geosciences, 91, 515–552.
Salter, J.W. 1865. A monograph of the British trilobites from the Cambrian, Silurian and Devonian formations. Monographs of the Palaeontolographical Society, 81–128. The Palaeontographical Society; London.
Samson, S., Palmer, A.R., Robison, R.A. and Secor Jr., D.T. 1990. Biogeographical significance of Cambrian trilobites from the Carolina slate belt. Bulletin of the Geological Society of America, 102, 1459–1470.
Schlotheim, E.F. 1823. Nachträge zur Petrefactenkunde, 114 pp. Becker’sche Buchhandlung; Gotha. Sdzuy, K. 1958. Neue Trilobiten aus dem Mittelkambrium von Spanien. Senckenbergiana lethaea, 39, 235–253.
Sjögren, A. 1872. Om några försteningar i Ölands Kambriska lager. Geologiska Föreningens i Stockholm Förhandlingar, 1 (5), 67–80.
Šnajdr, M., 1957. O nových trilobitech z českého kambria. Věstnik Ústředniho Ústavu Geologického, 32, 235–244.
Šnajdr, M. 1958. Trilobiti českého středního kambria. Rozpravy Ústředniho Ústavu Geologického, 24, 1–280.
Šnajdr, M. 1986. Two new paradoxid trilobites from the Jince Formation (Middle Cambrian, Czechoslovakia). Věstnik Ústředniho Ústavu Geologického, 61, 169–174.
Srivastava, D.C. and Shah, J. 2006. Digital method for strain estimation and retrodeformation of bilaterally symmetric fossils. Geology, 34, 593–596.
Strand, T. 1929. The Cambrian beds of the Mjøsen district in Norway. Norsk Geologisk Tidsskrift, 10, 308–366.
Sundberg, F.A., Geyer, G., Kruse, P.D., McCollum, L.B., Pegel’, T.V., Żylińska, A. and Zhuravlev, A.Yu. 2016. International correlation of the Cambrian Series 2–3, Stages 4–5 boundary interval. Australasian Paleontological Memoirs, 49, 83–124.
Szczepanik, Z. and Żylińska, A. 2016. The oldest rocks of the Holy Cross Mountains, Poland – biostratigraphy of the Cambrian Czarna Shale Formation in the vicinity of Kotuszów. Acta Geologica Polonica, 66, 267–281.
Thorslund, P. 1949. Notes on Kootenia sp. n. and associated Paradoxides species from the lower Middle Cambrian of Jemtland, Sweden. Sveriges Geologiska Undersökning, ser. C, 410, 3–8.
Wahlenberg, G. 1818. Petrifacta telluris Svecanae. Acta Societas Regiae Scientiarum, 8, 1–116. [for 1921]
Walch, J.E.I. 1771. Die Naturgeschichte der Versteinerungen zur Erläuterung der Knorrischen Sammlung von Merkwürdigkeiten der Natur, 250 pp. Felßecker; Nürnberg.
Walczak, A. and Belka, Z. 2017. Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes, southern Poland. Gondwana Research, 45, 138–151.
Webster, M. and Hughes, N.C. 1999. Compaction-related deformation in Cambrian olenelloid trilobites and its implications for fossil morphometry. Journal of Paleontology, 73, 355–371.
Westergård, A.H. 1936. Paradoxides oelandicus Beds of Öland. Sveriges Geologiska Undersökning C, 394, 1–66.
Żelaźniewicz A., Aleksandrowski, P., Buła, Z., Karnkowski, P.H., Konon, A., Oszczypko, N., Ślączka, A., Żaba, J. and Żytko, K. 2011. Regionalizacja tektoniczna Polski, 60 pp. Komitet Nauk Geologicznych PAN; Wrocław.
Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A. and Żaba, J. 2009. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geological Quarterly, 53, 93–124.
Żylińska, A., Kin, A. and Nowicki, J. 2013. Application of morphometric techniques for taxonomic revision of Berabichia oratrix (Orłowski, 1985) (Trilobita, Cambrian) from the Holy Cross Mountains, Poland. Geodiversitas, 35, 505–528.
Żylińska, A. and Szczepanik, Z. 2009. Trilobite and acritarch assemblages from the Lower–Middle Cambrian boundary interval in the Holy Cross Mountains (Poland). Acta Geologica Polonica, 59, 413–458.
Go to article

Authors and Affiliations

Jakub Nowicki
1
Anna Żylińska
1

  1. Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The objective of this paper is a review of data on reconstruction of the Pleistocene palaeogeography (environment) and stratigraphy based on studies of karst sites in the Świętokrzyskie (Holy Cross) Mountains. Although the number of known Pleistocene karst sites in this region is small, the investigations of them have played a crucial role in a research of the Pleistocene. The study of the Kozi Grzbiet site provided the first evidences for new climatostratigraphy and classification of glaciations in Poland. The explanation of genesis of cryogenic calcite crystals discovered in Chelosiowa Jama-Jaskinia Jaworznicka cave system started a new direction of palaeoenvironmental reconstructions of the last glacial period. Kadzielnia palaeontological site was one of the first Early Pleistocene fossil assemblages in karst studied in Poland, whereas Raj cave provided abundant palaeontological and archaeological material from the Last Glacial. Other sites are of less scientific importance, however some of them can be used in education and popularisation of geosciences. Small number of already studied sites does not exclude discoveries of next sites of high scientific importance.

Go to article

Authors and Affiliations

Jan Urban
Helena Hercman
Katarzyna Ochman
Andrzej Kasza
Download PDF Download RIS Download Bibtex

Abstract

The damage zones of exhumed strike-slip faults dissecting Jurassic carbonates in the south-western part of the Late Palaeozoic Holy Cross Mountains Fold Belt reveal second-order faults and fractures infilled with syntectonic calcite. The subsequent development of a structural pattern of microscopic fault-related structures and calcite infillings reflects the activity of strike-slip faults that began in the Late Cretaceous (Late Maastrichtian) and lasted until the early Miocene (Langhian). The fabric of the syntectonic veins provides insights into the evolution of the permeable fault-related structures that were the main pathways for fluid flow during fault activity. Microstructural study of calcite veins coupled with stable isotope and fluid inclusion data indicates that calcite precipitated primarily in a rock-buffered system related to strike-slip fault movement, and secondarily in a partly open system related to the local activity of the releasing Chmielnik stepover or the uplift of the area. The presence of meteoric fluids descending from the surface into damage zones suggest that the strike-slip faulting might have taken place in a nonmarine, continental environment.

Go to article

Authors and Affiliations

Barbara Rybak-Ostrowska
Andrzej Konon
Vratislav Hurai
Maciej Bojanowski
Agnieszka Konon
Michał Wyglądała

This page uses 'cookies'. Learn more