Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Until now, the mould sand in general use in the foundry industry are based on bentonite, which resulted from the fact that a good recognition properties and phenomena associated with this material. Come to know and normalized content of montmorillonite and carbonates and their important role in the construction of bentonite, and mass properties of the participation of compressive strength or scatter. Halloysite is widely used in industry and beyond them. However, little is known about its use in the foundry in Poland and abroad. This article presents preliminary research conducted at the Foundry Department of Silesian University of Technology on this material. Will raise the question of the representation of this two materials, which contains information connected with history and formation of materials, their structure and chemical composition. In the research, the results of compressive strength tests in wet masses of quartz matrix, where as a binder is used halloysite and bentonite in different proportions.

Go to article

Authors and Affiliations

M. Cholewa
Ł. Kozakiewicz
Download PDF Download RIS Download Bibtex

Abstract

As part of the work, experiments were carried out on a laboratory scale to assess the effectiveness of the use of composite capsules based on halloysite and sodium alginate for the adsorption of copper from rainwater. The halloysite was subjected to acid activation prior to the encapsulation process. The characteristics of the capsules obtained were determined by means of SEM surface imaging, nitrogen adsorption by the BET method and pH PZC measurement by the suspension method. Adsorption was studied using various operational parameters such as adsorbent dose, contact time, pH and concentration of copper ions in the rainwater. A high percentage of copper ions removal was demonstrated, i.e. 72% for halloysite (H), and 83% for activated halloysite (HA) for a dose of 2.0 g/L. Adsorption of Cu (II) was consistent with pseudo-second order kinetics. The adsorbents showed a high adsorption capacity at the level of 11.03 mg/g, determined by the Langmuir isotherm model. This model fit well with the experimental data.
Go to article

Bibliography

  1. Belhouchat, N. Zaghouane-Boudiaf, N. Viseras, C. (2017). Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads, Applied Clay Science, 135, pp. 9- 15. DOI:10.1016/j.clay.2016.08.031
  2. Cavallaro, G. Gianguzza, A. Lazzara, G. Milioto, S. Piazzese, D. (2013). Alginate gel beads filled with halloysite nanotubes, Applied Clay Science, 72, pp. 132-137. DOI:10.1016/j.clay.2012.12.001
  3. Derafa, G. Zaghouane-Boudiaf, H. Ibbora, C.V. (2018). Preparation and characterization of new low cost adsorbent beads based on activated bentonite encapsulated with calcium alginate for removal of 2,4-dichlorophenol from aqueous medium, International Journal of Biological Macromolecules, 115, pp. 257-265. DOI:10.1016/j.ijbiomac.2018.04.064
  4. Du, J. Zhang, B. Li, J. Lai, B. (2020), Decontamination of heavy metal complexes by advanced oxidation processes: A review, Chinese Chemical Letters, 31, 10, pp. 2575-2582. DOI: 10.1016/j.cclet.2020.07.050
  5. Gao, X. Guo, Ch. Hao, J. Zhao, Z. Long, H. Li, M. (2020). Adsorption of heavy metal ions by sodium alginate based adsorbent-a review and new perspectives, International Journal of Biological Macromolecules, 164, pp. 4423-4434. DOI:10.1016/j.ijbiomac.2020.09.046
  6. He, Y. Chen, Y. Zhang, K. Ye, W. Wu, D. (2019), Removal of chromium and strontium from aqueous solutions by adsorption on laterite, Archives of Environmental Protection, 45, 3 pp.11-20. DOI:10.24425/aep.2019.128636
  7. Kamińska G. Bohdziewicz,J. (2016), Potential of various materials for adsorption of micropollutants from wastewater, Environ. Prot. Eng. 42, pp. 161-178. DOI:10.5277/epe160413
  8. Li, X. Liu, N. Tang, L. Zhang, J. (2020). Specific elevated adsorption and stability of cations in the interlayer compared with at the external surface of clay minerals, Applied Clay Science, 198, 105814. DOI: 10.1016/j.clay.2020.105814
  9. Liao, Z. Zhao, Z. Zhu, J. Chen, H. Meng, D. (2021). Complexing characteristics between Cu(Ⅱ) ions and dissolved organic matter in combined sewer overflows: Implications for the removal of heavy metals by enhanced coagulation, Chemosphere, 265, 129023. DOI:10.1016/j.chemosphere.2020.129023
  10. Oussalah, A. Boukerroui,A. Aichour, A. Djellouli, B. (2019). Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: Adsorption and reusability studies, International Journal of Biological Macromolecules, 124, pp.854-862. DOI:10.1016/j.ijbiomac.2018.11.197
  11. Mariana, M. Khalil, A. Mistar, E.M. Yahya, E.B. Alfatah, T. Danish, M. Amayreh, M. (2021). Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, Journal of Water Process Engineering, 43, 102221. DOI: 10.1016/j.jwpe.2021.102221
  12. Masindi, V. Muedi K.L. (2018) Environmental Contamination by Heavy, Heavy Metals, 10, pp. 115-132. DOI: 10.5772/intechopen.76082
  13. Mellouk, S. Belhakem, A. Marouf-Khelifa, K. Schott, J. Khelifa,A. (2011). Cu(II) adsorption by halloysites intercalated with sodium acetate, Journal of Colloid and Interface Science, 360, 2, pp. 716-724. DOI: 10.1016/j.jcis.2011.05.001
  14. Murat-Błażejewska, S. Błażejewski, R. (2020). Converting sewage holding tanks to rainwater harvesting tanks in Poland, Archives of Environmental Protection, 46, 4, pp. 121-131. DOI: 10.24425/aep.2020.135770
  15. Pan,L. Wang Z. Zhao, X. He, H. (2019). Efficient removal of lead and copper ions from water by enhanced strength-toughness alginate composite fibers, International Journal of Biological Macromolecules, 134, pp. 223 – 229. DOI:10.1016/j.ijbiomac.2019.05.022
  16. Patel, H.K Kalaria, R.K. Jokhakar, P.H. Patel, Ch.P. Patel, B.Y. (2022) Chapter 17 - Removal of emerging contaminants in water treatment by an application of nanofiltration and reverse osmosis, Editor(s): Maulin Shah, Susana Rodriguez-Couto, Jayanta Biswas, Development in Wastewater Treatment Research and Processes, pp. 385-400. DOI:10.1016/B978-0-323-85583-9.00005-3
  17. Pawar R.R. Ingole, L.P.G. Lee, S. (2020). Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment, International Journal of Biological Macromolecules, 164, pp. 3145-3154. DOI:10.1016/j.ijbiomac.2020.08.130
  18. Peydayesh, M. Mohammadi, T. Nikouzad, S.K. (2020). A positively charged composite loose nanofiltration membrane for water purification from heavy metals, Journal of Membrane Science, 611, 118205. DOI: 10.1016/j.memsci.2020.118205
  19. Regulation of the Minister of Health on 7 December 2017, On the Quality of Water Intended for Human Consumption (In Polish). Dz.U. 2017 poz. 2294
  20. Richards, S. Rao, L. Connelly, S. Raj A. Raveendran, L. Shirin, S. Jamwal, P. Helliwell, R. (2021). Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment, Journal of Environmental Management, 286, 112223. DOI: 10.1016/j.jenvman.2021.112223
  21. Sulyman, M. Kucinska-Lipka, J. Sienkiewicz, M. Gierak, A. (2021) Development, characterization and evaluation of composite adsorbent for the adsorption of crystal violet from aqueous solution: Isotherm, kinetics, and thermodynamic studies, Arabian Journal of Chemistry, 14 (5), 103115. DOI:10.1016/j.arabjc.2021.103115
  22. Sutirman, Z.A. Sanagi, M.M. Wan Aini, W.I. (2021). Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review, International Journal of Biological Macromolecules, 174, pp. 216-228. DOI:10.1016/j.ijbiomac.2021.01.150
  23. Szczepanik, B. Słomkiewicz, P. Garnuszek, M. Czech, K. Banaś, D. Kubala-Kukuś, A. Stabrawa, I. (2015). The effect of chemical modification on the physico-chemical characteristics of halloysite: FTIR, XRF, and XRD studies, Journal of Molecular Structure, 1084, pp. 16-22. DOI:10.1016/j.molstruc.2014.12.008
  24. Szczepanik, B. Rogala, P. Słomkiewicz, P.M. Banaś, D. Kubala-Kukuś, A. Stabrawa, I. (2017) Synthesis, characterization and photocatalytic activity of TiO2-halloysite and Fe2O3-halloysite nanocomposites for photodegradation of chloroanilines in water, Applied Clay Science, 149, pp. 118-126. DOI:10.1016/j.glina.2017.08.016
  25. Vasanth Kumar, K. Sivanesan S. (2007), Sorption isotherm for safranin onto rice husk: Comparison of linear and non-linear methods, Dyes and Pigments, 72, pp. 130-133. DOI:10.1016/j.dyepig.2005.07.020 .
  26. Zhao H. Ouyang,X. Yang, L. (2021) Adsorption of lead ions from aqueous solutions by porous cellulose nanofiber–sodium alginate hydrogel beads, Journal of Molecular Liquids, 324, 2021, 115122. DOI:10.1016/j.molliq.2020.115122.
  27. Zaghouane-Boudiaf, H. Boutahala, M. Sahnoun, S. Tiar, Ch. Gomri, F. (2014). Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing the 2,4,5-trichlorophenol, Applied Clay Science, 90, pp.81-87. DOI:10.1016/j.clay.2013.12.030
Go to article

Authors and Affiliations

Anna Marszałek
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on discussing the adsorption process of phenol and its chloro-derivatives on the HDTMA-modified halloysite. Optimized chemical structures of phenol, 2-, 3-, 4-chlorophenol, 2,4-dichloro-, and 2,4,6-trichlorophenol were obtained with computational calculation (the Scigress program). Charge distributions and the hypothetical structure of the system HDTMA-modified halloysite are among their key features. The above-mentioned calculations are applied in order to explain adsorption mechanism details of chlorophenols on the HDTMA-modified halloysite in aqueous solutions. The results of electron density distribution and solvent accessible surface area calculations for phenol and chlorophenols molecules illustrate the impact of chlorine substitution position in a phenol molecule, both on the mechanism and the kinetics of their adsorption in aqueous solutions. Experimental adsorption data were sufficiently represented using the Langmuir multi-center adsorption model for all adsorbates. In addition, the relations between adsorption isotherm parameters and the adsorbate properties were discussed. This study also targets at explaining the role of meta position as a chlorine substituent for mono-chloro derivatives. Given the above findings, two possible mechanisms were utilized as regards chlorophenol adsorption on the HDTMA-modified halloysite, i.e., electrostatic and partition interactions when the chlorophenols exist in a molecular form.
Go to article

Bibliography

  1. Ali, I., Asim M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113, 170. DOI:10.1016/j.jenvman.2012.08.028
  2. Berland, K., Cooper, V.R., Lee, K., Schröder, E., Thonhauser, T., Hyldgaard, P. & Lundqvist, B. I. (2015). Van der Waals forces in density functional theory: A review of the vdW-DF method. Rep. Prog. Phys. 78, 066501. DOI:10.1088/0034-4885/78/6/066501
  3. Bodzek, M., Konieczny, K. & Kwiecińska-Mydlak A. (2021). New generation of semipermeable membranes with carbon nanotubes for water and wastewater treatment: Critical review. Arch. Environ. Protect. 47, pp. 3–27. DOI:10.24425/aep.2021.138460
  4. Cavallaro, G. Lazzara, G. Milioto, S. & Parisi, F. (2015). Hydrophobically Modified Halloysite Nanotubes as reverse Micelles for Water-in-Oil Emulsion. Langmuir 31, 7472–8. DOI:10.1021/acs.langmuir.5b01181
  5. Chen, C., Geng, X. & Huang W. (2017). Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem. Eng. J. 327, 941. DOI:10.1016/j.cej.2017.06.183
  6. Cruz-Guzmán, M., Celis, R., Hermosín, M.C., Koskinen, W.C. & Cornejo, J. (2005). Adsorption of pesticides from water by functionalized organobentonites. J. Agric. Food. Chem. 53, pp. 7502–7511. DOI:10.1021/jf058048p
  7. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment. Sci. Total Environ. 322, 21. DOI:10.1016/j.scitotenv.2003.09.015
  8. Czaplicka M. & Czaplicki, A. (2006). Photodegradation of 2,3,4,5-tetrachlorophenol in water/methanol mixture. J. Photochem. Photobiol. A 178, 90. DOI:10.1016/j.jphotochem.2005.07.005
  9. Damjanović, L., Rakić, V., Rac, V., Stošić, D. & Auroux, A. (2010). The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents. J. Hazard. Mater. 184, 477. DOI:10.1016/j.jhazmat.2010.08.059
  10. Djebbar, M., Djafri, F., Bouchekara, M. & Djafri, A. (2012). Adsorption of phenol on natural clay. Appl. Water Sci. 2, 77. Doi: 10.1007/s13201-012-0031-8
  11. Garba, Z.N., Zhou, W., Lawan, I., Xiao, W., Zhang, M., Wang, L., Chen, L. & Yuan Z. (2019). An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manage. 241, 59. DOI:10.1016/j.jenvman.2019.04.004.
  12. Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787. DOI:10.1002/jcc.20495
  13. Honda, M. & Kannan, K. (2018). Biomonitoring of chlorophenols in human urine from several Asian countries, Greece and the United States. Environ. Pollut. 232, 487. DOI:10.1016/j.envpol.2017.09.073
  14. Hu, X., B. Wang, Yan, G. & Ge B. (2012). Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite. Arch. Environ. Protect. 48, pp. 37–47. DOI:10.24425/aep.2022.142688
  15. Huang, J., Jin, X. & Deng, S. (2012). Phenol adsorption on an N-methylacemetamide-modified hypercrosslinked resin from aqueous solutions. Chem. Eng. J. 192, 192. DOI:10.1016/j.cej.2012.03.078
  16. Issabayeva, G., Hang, S.Y., Wong M.C. & Aroua, M. K. (2018). A review on the adsorption of phenols from wastewater onto diverse groups of adsorbents. Rev. Chem. Eng. 34, pp. 855–873. DOI:10.1515/revce-2017-0007
  17. Joussein, E., Petit, S., Churchman, G. J., Theng, B. K. G., Righi, D. & Delvaux, B. (2005). Halloysite clay minerals-a review. Clay Clay Miner. 40, 383. DOI:10.1180/0009855054040180
  18. Lin, S.S., Chang, D.J., Wang, C.H. & Chen, C.C. (2003). Catalytic wet air oxidation of phenol by CeO2 catalyst-effect of reaction conditions. Water Res. 37, pp. 793–800. DOI:10.1016/s0043-1354(02)00422-0
  19. Madannejad, S., Rashidi, A., Sadeghhassani, S., Shemirani, F. & Ghasemy, E. (2018) Removal of 4-chlorophenol from water using different carbon nanostructures: a comparison study. J. Mol. Liq. 249, 877. DOI:10.1016/j.molliq.2017.11.089
  20. Majlesi, M. & Hashempour Y. (2017). Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling. Arch. Environ. Protect. 43, pp. 13–25. DOI:10.1515/aep-2017-0035
  21. Nafees, M. & Waseem, A. (2014). Organoclays as Sorbent Material for Phenolic Compounds: A Review. Clean – Soil, Air, Water 41, pp. 1-9. DOI:10.1002/clen.201300312
  22. Ocampo-Perez, R., Leyva-Ramos, R., Mendoza-Barron, J. & Guerrero-Coronado, R. M. (2011). Adsorption rate of phenol from aqueous solution onto organobentonite: Surface diffusion and kinetic models. J. Colloid Interf. Sci. 364, 195. DOI:10.1016/j.jcis.2011.08.032
  23. Pandey, G., Munguambe, D. M., Tharmavaram, M., Rawtani, D. & Agrawal, Y.K. (2017). Halloysite nanotubes - An efficient ‘nano-support’ for the immobilization of α-amylase. App. Clay Sci. 136, pp. 184–191. DOI:10.1016/j.clay.2016.11.034
  24. Pandey, G., Tharmavaram, M., Khatri, N. & Rawtani, D. (2022). Mesoporous halloysite nanotubes as nano-support system for cationic dyes: An equilibrium, kinetic and thermodynamic study for latent fingerprinting. Micropor. Mesopor. Mat. 346, 112288. DOI:10.1016/j.micromeso.2022.112288
  25. Pandey, G., Tharmavaram, M., Phadke, G., Rawtani, D., Ranjan, M. & Sooraj K.P. (2022). Silanized halloysite nanotubes as ‘nano-platform’ for the complexation and removal of Fe(II) and Fe(III) ions from aqueous environment. Sep. Purif. Technol. 29, 121141. DOI:10.1016/j.seppur.2022.121141
  26. Park, Y., Ayoko, G.A., Kurdi, R., Horváth, E., Kristóf, J. & Frost, R.L. (2013). Adsorption of phenolic compounds by organoclays: Implications for the removal of organic pollutants from aqueous media, J. Colloid Interf. Sci. 406, 196. DOI:10.1016/j.jcis.2013.05.027
  27. Pasbakhsh, P.. Churchman, G.J. & Keeling, J.L. (2013). Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl. Clay Sci. 74, 47. DOI:10.1016/j.clay.2012.06.014
  28. Paul, D.R., Zeng, Q.H., Yu, A.B. & Lu, G.Q. (2005). The interlayer swelling and molecular packing in organoclays, J. Colloid Interface Sci. 292, pp. 462–468. DOI:10.1016/j.jcis.2005.06.024
  29. Qiu, X., Li, N., Ma, X., Yang, S., Xu, Q., Li, H. & Lu, J. (2014). Facile preparation of acrylic ester-based crosslinked resin and its adsorption of phenol at high concentration. J. Environ. Chem. Eng. 2, 745. DOI:10.1016/j.jece.2013.11.016
  30. Raczyńska-Żak, M. PhD Thesis, supervisor P. Słomkiewicz, Kielce, Poland, 2018
  31. Rawajfih, Z. & Nsour, N. (2006). Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J. Colloid Interface Sci. 298, pp. 39–49. DOI:10.1016/j.jcis.2005.11.063
  32. Sarkar, B., Xi, Y., Megharaj, M., Krishnamurti, G.S.M., Rajarathnam, D. & Naidu, R. (2010). Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J. Hazard. Mater. 183, 87. DOI:10.1016/j.jhazmat.2010.06.110
  33. Setter, O. P., Dahan, L., Hamad, H. A. & Segal, E. (2022). Acid-etched Halloysite nanotubes as superior carriers for ciprofloxacin. App. Clay Sci. 228, 106629. DOI:10.1016/j.clay.2022.106629
  34. Sinha, B,. Ghosh, U.K., Pradhan, N.C. & Adhikari, B. (2006). Separation of phenol from aqueous solution by membrane pervaporation using modified polyurethaneurea membranes. J. Appl. Polym. Sci. 10, pp. 1857–1865. DOI:10.1002/app.23566
  35. Słomkiewicz, P., Szczepanik, B. & Czaplicka, M. (2020). Adsorption of Phenol and Chlorophenols by HDTMA Modified Halloysite Nanotubes, Materials 13, 3309 DOI:10.3390/ma13153309
  36. Smith, J.A. & Galan, A. (1995). Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environ. Sci. Technol. 29, pp. 685–692. DOI:10.1021/es00003a016
  37. Su, J., Lin, H.-F., Wang, Q.-P., Xie, Z.M. & Chen, Z.L. (2011). Adsorption of phenol from aqueous solutions by organomontmorillonite, Desalination, 269, 163. DOI:10.1016/j.desal.2010.10.056
  38. Tamijani, A.A., Salam, A. & de Lara-Castells, M. P. (2016). Adsorption of Noble-Gas Atoms on the TiO2(110) Surface: An Ab Initio-Assisted Study with van der Waals-Corrected DFT. J. Phys. Chem. C. 120, 18126. DOI:10.1021/acs.jpcc.6b05949
  39. Tana, D., Yuan, P., Liu, D. & Du, P. Modifications of Halloysite, Chapter 8 in Developments in Clay Science, December 2016
  40. Tharmavaram, M., Pandey, G. & Rawtani, D. (2018). Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications. Adv. Colloid Interface Sci. 261, 82–101. DOI:10.1016/j.cis.2018.09.001
  41. Tharmavaram, M., Pandey, G., Bhatt, P., Prajapati, P., Rawtani, D., Sooraj, K.P. & Ranjan, M. (2021). Chitosan functionalized Halloysite Nanotubes as a receptive surface for laccase and copper to perform degradation of chlorpyrifos in aqueous environment. Int. J. Biol. Macromol. 191, pp. 1046–1055. DOI:10.1016/j.ijbiomac.2021.09.098
  42. Tharmavaram, M., Pandey, G., Khatri, N. & Rawtani, D. (2023). L-arginine-grafted halloysite nanotubes as a sustainable excipient for antifouling composite coating. Mater. Chem. Phys. 293, 126937. DOI:10.1016/j.matchemphys.2022.126937
  43. Wu, J. & Yu, H.Q. (2006). Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: isotherms, kinetics and thermodynamics. J. Hazard. Mater. 137, pp. 498–508. DOI:10.1016/j.jhazmat.2006.02.026
  44. Xie, J., Meng, W., Wu, D., Zhang, Z. & Kong, H. (2012). Removal of organic pollutants by surfactant modified zeolite: Comparison between ionizable phenolic compounds and non‐ionizable organic compounds. J. Hazard. Mater. 231, 57. DOI:10.1016/j.jhazmat.2012.06.035
  45. Yang, Q., Gao, M. & Zang, W. (2017). Comparative study of 2,4,6-trichlorophenol adsorption by montmorillonites functionalized with surfactants differing in the number of head group and alkyl chain. Colloid. Surf. Physicochem. Eng. Asp. 520, 805. DOI:10.1016/j.colsurfa.2017.02.057
  46. Yousef, R.I. & El-Eswed B. (2009). The effect of pH on the adsorption of phenol and chlorophenols onto natural zeolite. Colloid Surf. A 334, pp. 92–99. DOI:10.1016/j.colsurfa.2008.10.004
  47. Yu, J.-Y., Shin, M.Y., Noh, J.-H. & Seo, J.J. (2004). Adsorption of phenol and chlorophenols on Ca-montmorillonite in aqueous. Geosci. J. 8, 185. DOI:10.1007/BF02910194
  48. Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. J. Environ. Sci. Health. Part A 39, pp. 2661–2670. DOI:10.1081/ESE-200027022
  49. Zhang, L., Zhang, B., Wu, T., Sun, D. & Li, Y. (2015). Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 484, 118. DOI:10.1016/j.colsurfa.2015.07.055
  50. Zhou, Q., Frost, R.L., He, H., Xi, Y. & Zbik, M. (2007). TEM, XRD, and thermal stability of adsorbed paranitrophenol on DDOAB organoclay. J. Colloid Interface Sci. 311, pp. 24–37. DOI:10.1016/j.jcis.2007.02.039
Go to article

Authors and Affiliations

Beata Szczepanik
1
Anna Kołbus
1
Piotr Słomkiewicz
1
Marianna Czaplicka
2
ORCID: ORCID

  1. Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
  2. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

Halloysite is a filler which may be used to produce composites with thermoplastic polymer matrix. This work summarized the results of investigations of processing, structural, mechanical, and thermal properties of the composites with poly(vinyl chloride) (PVC) matrix and raw halloysite (HA) as well as its calcined product (KHA). The effectiveness of calcination was confirmed with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption method. The PVC composites with HA as well as KHA were processed in the molten state in the Brabender mixer chamber. The reduction of gelation time and simultaneous increase in maximum torque with filler content were found based on the results of plastographometric analysis. SEM images of PVC/halloysite composites showed a homogeneous distribution of the filler in the polymer matrix. The introduction of halloysite leads to a slight increase in Young’s modulus and tensile strength compared to neat PVC, where the increase of both parameters is greater when KHA is used. The incorporation of 1% KHA led to an increase in impact strength, an effect which may be attributed to toughening of the polymer. A slight improvement of the Vicat softening temperature of 2.7°C for PVC/HA and heat deflection temperature of 2.4°C for PVC/KHA was also ascertained for PVC modified with 10 wt% of filler.
Go to article

Authors and Affiliations

Martina Wieczorek
1
ORCID: ORCID
Jolanta Tomaszewska
1
ORCID: ORCID
Tomasz Bajda
2
ORCID: ORCID
Jacek Długosz
3
ORCID: ORCID

  1. Bydgoszcz University of Science and Technology, Faculty of Chemical Technology and Engineering, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
  2. AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Al. A. Mickiewicza 30, 30-059, Kraków, Poland
  3. Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Al. Prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the research related to the decomposition of polylactic acid (PLA)/halloysite nanotube (HNTs) biocomposites into a simple organic form. After manufacturing the nanocomposites, the evaluation of the composting process simulation was conducted using the biodegradation method. First, the selected properties of PLA/HNTs biocomposites, such as density, water absorption, and impact strength were tested. Next, the impact of the composting process on the behavior of PLA/HNTs composites was investigated from 30 to 90 days. Finally, the loss of mass of the composites, hardness, and the structural changes of biocomposites under the composting conditions before and after the composting were evaluated using SEM microscopy. The results showed that the PLA modified by HNT particles has biodegradation-friendly properties and therein is fully suitable for organic recycling. Due to this, in the coming years, it may contribute to the replacement of non-biodegradability polymers, i.e. polyolefins and polyesters, and reduction of plastic packaging wastes.
Go to article

Bibliography

  1.  M. Rybaczewska-Błażejowska and A. Mena-Nieto, “Circular economy: comparative life cycle assessment of fossil polyethylene terephthalate (PET) and its recycled and bio-based counterparts”, Manag. Prod. Eng. Rev. 11(4), 121–12 (2020).
  2.  D. Czarnecka-Komorowska and K. Wiszumirska, “Sustainability design of plastic packaging for the Circular Economy”, Polimery 65(1), 8–17 (2020).
  3.  J. Flizikowski and M. Macko, ”Competitive design of shredder for plastic in recycling. Ed. By I. Horvath, P. Xirouchakis, in Proc. of 2004 5th International Symposium on Tools and Methods of Competitive Engineering, Lausanne, Switzerland, 2004, pp. 1147‒1148.
  4.  P. Wiseman, Petrochemicals, Wiley, New York.1986.
  5.  P. Krawiec, L. Różanski, D. Czarnecka-Komorowska, and Ł. Warguła, “Evaluation of the Thermal Stability and Surface Characteristics of Thermoplastic Polyurethane V-Belt”, Materials 13(7), 1502 (2020).
  6.  V. Siracusa, P. Rocculi, S. Romani, and M.D. Rosa, “Biodegradable polymers for food packaging: a review”, Trends Food Sci. Technol. 19(12), 634‒643 (2008).
  7.  J.H. Song, R.J. Murphy, R. Narayan, and G.B.H. Davies, “Biodegradable and compostable alternatives to conventional plastics”, Phil. Trans. Roy. Soc. London B 364(1526), 2127–2139 (2009).
  8.  I. Wojnowska-Baryła, D. Kulikowska, and K. Bernat, “Effect of Bio-Based Products on Waste Management”, Sustainability 12(5), 2088 (2020).
  9.  P. Sakiewicz, R. Nowosielski, W. Pilarczyk, K. Gołombek, and M. Lutyński, “Selected properties of the halloysite as a component of Geosynthetic Clay Liners (GCL)”, J. Achiev. Mater. Manuf. Eng. (2), 177‒191 (2011).
  10.  Y. Tokiwa and B.P. Calabia, “Biodegradability and biodegradation of poly(lactide)”, Appl. Microbiol. Biotechnol, 72(2), 244–251 (2006).
  11.  H. Nishida and Y. Tokiwa, “Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation”, J. Appl. Polym. Sci. 46(8), 1467–1476 (1992).
  12.  F. Razza, M. Fieschi, F.D. Innocent, and C. Bastioli, “Compostable cutlery and waste management: An LCA”, Waste Manag. 29, 1424‒1433 (2009).
  13.  APME 2002, “Using waste plastic as a substitute for coal”, Warmer Bull. 83, 20‒21 (2002).
  14.  ASTM 2002, “Standard specification for compostable plastics (Designation: D 6400‒99)”, ASTM International, USA 2002.
  15.  R. Narayan, ”Biobased and biodegradable polymer materials: Rationale, drivers, and technology exemplars”, ACS Symposium Series 939(18), 282‒306 (2006).
  16.  H. Saveyn and P. Eder, “Kryteria end-of-waste dla odpadów biodegradowalnych poddawanych obróbce biologicznej (kompost i fermentat): Propozycje techniczne”, Luxembourg, Publications Office of the European Union, 2014.
  17.  W. Sikorska, M. Musioł, J. Rydz, M. Kowalczuk, and G. Adamus, “Industrial composting as a waste management method of polyester materials obtained from renewable sources”, Polimery 11‒12, 818‒827 (2019).
  18.  J.S. Yaradoddi et al., “Alternative and Renewable Bio-based and Biodegradable Plastics”, in Handbook of Ecomaterials, eds. L. Martínez, O. Kharissova, B. Kharisov, Springer, Cham, 2019.
  19.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad Sci. Tech. Sci. 68(2), 199‒206 (2020).
  20.  A. Höglund, K. Odelius, and A.C. Albertsson, “Crucial Differences in the Hydrolytic Degradation between Industrial Polylactide and Laboratory-Scale Poly(L-lactide)”, ACS Appl. Mater. Interfaces 4‒5, 2788‒2793 (2012).
  21.  L. Avérous, “Polylactic acid: Synthesis, properties and applications”, in Monomers, Polymers and Composites from Renewable Resources, pp. 433–450, eds. M.N. Belgacem, A. Gandini, Elsevier; Oxford, UK, 2008.
  22.  G. Kale et al., “Compostability of Bioplastic Packaging Materials: An Overview”, Macromol. Biosci. 7(3), 255‒277 (2007).
  23.  T. Iwata and Y. Doi, “Morphology and enzymatic degradation of poly(L-lactic acid) single crystals, Macromolecules 31(8), 2461–2467 (1998).
  24.  R.T. McDonald, S. McCarthy, and R.A. Gross, “Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity”, Macromolecules 29(23), 7356–7361 (1996).
  25.  H. Tsuji and S. Miyauchi, “Poly(L-lactide): VI. Effects of crystallinity on enzymatic hydrolysis of poly(L-lactide) without free amorphous region”, Polym. Degrad. Stab. 71(3), 415–424 (2001).
  26.  Y. Tokiwa and T. Suzuki, “Hydrolysis of polyesters by Rhizopus delemar lipase”, Agric. Biol. Chem. 42(5), 1071–1072 (1978).
  27.  S. Li and S. McCarthy, “Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s”, Macromolecules 32(13), 4454–4456 (1999).
  28.  A.Torres, A.S.M. Li, S. Roussos, and M. Vert, “Degradation of L-and DL-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida”, J. Environ. Polym. Degrad. 4, 213–223 (1996).
  29.  T. Ohkita and S.H. Lee, “Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites”, J. Appl. Polym. Sci. 100(4), 3009–3017 (2006).
  30.  H. Urayama, T. Kanamori, and Y. Kimura “Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units”, Macromol. Mater. Eng. 287(2), 116–121 (2002).
  31.  O. Gil-Castell et al., “Polylactide-based self-reinforced composites biodegradation: Individual and combined influence of temperature, water and compost”, Polym. Degrad. Stab. 158, 40–51 (2018).
  32.  J. Giri et al., “Compostable composites of wheat stalk micro- and nanocrystalline cellulose and poly(butylene adipate-co-terephthalate): Surface properties and degradation behavior”, J. Appl. Polym. Sci. 136(43), 48149 (2019).
  33.  P. Olsén, N. Herrera, and L.A. Berglund, “Toward biocomposites recycling: localized interphase degradation in PCL-cellulose biocomposites and its mitigation”, Biomacromolecules 21(5), 1795–1801 (2020).
  34.  L. Mespouille, Ph. Degee, and Ph. Dubois, ”Amphiphilic poly(N,N-dimethylamino-2-ethyl methacrylate)-g-poly(ε-caprolactone) graft copolymers: synthesis and characterisation”, Eur. Polym. J. 41(6), 1187‒1195 (2005).
  35.  D. Neugebauer, “The synthesis of grafted copolymers by a combination of two controlled polymerization techniques”, Polimery 56(7‒8), 521‒629 (2011).
  36.  NatureWorks catalogue [Online]. Available: http://www.cn-plas.com/uploads/soft/190227/3260HP.pdf (Accessed on 25 Oct. 2020).
  37.  Sigma-Aldrich Catalogue [Online]. Available: https://www.sigmaaldrich.com/catalog/product/aldrich/685445?lang=pl&region=PL (Accessed on 10 Oct. 2020).
  38.  K. Gawdzińska, S. Paszkiewicz, E. Piesowicz, K. Bryll, I. Irska, A. Lapis, E. Sobolewska, A. Kochmańska, W. Ślączka, “ Preparation and characterization of hybrid nanocomposites for dental applications”, Applied Sciences 9(7), 1381 (2019).
  39.  Polish standard PN-EN ISO 1183-1:2004. Plastics – Methods for determining the density of non-cellular plastics. Part 1: Immersion method, liquid pyknometer method and titration method (accessed on 28 Oct. 2020).
  40.  Polish standard PN-EN ISO 179:2010. Plastics – Determination of Charpy impact properties – Part 1: Non-instrumented impact test. (accessed on 28 Oct. 2020).
  41.  Polish standard PN-EN ISO 62:2008. Plastics – Determination of water absorption. (accessed on 29 Oct. 2020).
  42.  W. Grellmann and S. Seidler, „Polymer Testing” Hanser Publications, OH, 2013.
  43.  D. Czarnecka-Komorowska, E. Kostecka, K. Bryll, and K. Gawdzińska, „Analysis of the decomposition using the short degradation technique of polylactic acid/halloysite nanotube biocomposites”, Machine Modelling and Simulations MMS 2020 Conference, Tleń, 2020, (to be published).
  44.  A. Fick, “On Liquid Diffusion”, Lond. Edinb. Dubl. Phil. Mag. 10, 30–39 (1855).
  45.  A. Fick, “Ueber Diffusion (On Diffusion)”, Ann. Phys. Chemie von J.C. Poggendorffs 94, 59–86 (1855).
  46.  Polish standard PN-EN ISO 868. Plastics and ebonite — Determination of indentation hardness by means of a durometer (Shore hardness). (accessed on 29 Oct. 2020).
  47.  P. Russo, S. Cammarano, E. Bilotti, T. Peijs, P. Cerruti, and D. Acierno, ”Physical properties of poly lacticacid/clay nanocomposite films: Effect of filler content and annealing treatment”, J. Appl. Polym. Sci. 131(2), 39798 (2014).
  48.  K. Prashantha, B. Lecouvet, M. Sclavons, M.F Lacrampe, and P. Krawczak, “Poly(lactic acid)/halloysite nanotubes nanocomposites: Structure, thermal, and mechanical properties as a function of halloysite treatment”, J. Appl. Polym. Sci. 128(3), 1895–1903, (2013).
  49.  S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
  50.  M. Murariu, A.-L. Dechief, Y. Paint, S. Peeterbroeck, L. Bonnaud, and P. Dubois, “Polylactide (PLA)-halloysite nanocomposites: Production. morphology and key-properties”, J. Polym. Environ. 20(4), 932–943 (2012).
  51.  D. Czarnecka, D. Ciesielska, and J. Jurga, “The brittle-ductile transition (BDT) in recycled polymers”, Proceeding of the Rewas’04, Global Symposium on Recycling, Waste Treatment and Clean Technology, Madrid, Spain, 2004.
  52.  J.L. Thomason and M.A. Vlug, “Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 4. Impact properties”, Composites Part A 28A, 277‒288 (1997).
  53.  Y. Chen, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, and D.M. Devine, “Halloysite nanotube reinforced polylactic acid composite”, Polym. Compos. 38(10), 2166–2017 (2017).
  54.  S. Montava-Jorda, V. Chacon, D. Lascano, L. Sanchez-Nacher, and N. Montanes, “Manufacturing and characterization of functionalized aliphatic polyester from poly(lactic acid) with halloysite nanotubes”, Polymers 11(8), 1314 (2019).
  55.  R. Kumar, M.K. Yakubu, and R.D. Anandjiwala, “Biodegradation of flax fiber reinforced poly lactic acid”, Express Polym. Lett. 4(7), 423–430 (2010).
  56.  A.P. Mathew, K. Oksman, and M. Sain, “Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)”, J. Appl. Polym. Sci. 97(5), 2014–2025 (2005).
Go to article

Authors and Affiliations

Dorota Czarnecka-Komorowska
1
ORCID: ORCID
Katarzyna Bryll
2
ORCID: ORCID
Ewelina Kostecka
2
ORCID: ORCID
Małgorzata Tomasik
3
ORCID: ORCID
Elżbieta Piesowicz
4
ORCID: ORCID
Katarzyna Gawdzińska
2
ORCID: ORCID

  1. Institute of Materials Technology, Polymer Processing Division; Poznan University of Technology, 60-965 Poznan, Poland
  2. Department of Machines Construction and Materials, Maritime University of Szczecin, 71-650 Szczecin, Poland
  3. Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
  4. Institute of Material Science and Engineering, West Pomeranian University of Szczecin, 70-310 Szczecin, Poland

This page uses 'cookies'. Learn more