Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Study of the trajectories of the motion of satellites remains an urgent task for modern science. This is especially true for GNSS systems and for satellites intended for Earth remote sensing. The basis of their operation is to accurately determine the position of the satellite, and the parameters of signal propagation. Considering the great distances and speeds of both satellites and the Earth in calculating these parameters, it is necessary to take into account the special and general theory of relativity. In the article formulas have been derived for calculating additional corrections for relativistic effects. A mathematical model for calculating the metric tensor was created. A sequence of correction was also proposed.
Go to article

Authors and Affiliations

Waldemar Wójcik
Ihor Bialyk
Olha Stepanchenko
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews the key studies concerning GNSS positioning and applications conducted at leading Polish research institutions from 2019 until 2022. The review also constitutes a contribution to the national report of Poland for the International Union of Geodesy and Geodynamics (IUGG) presented at the 28th General Assembly of IUGG held in 2023 in Berlin, Germany. In particular, we discuss the advances in theory and applications of relative and absolute positioning, troposphere and ionosphere sounding, smartphone and low-cost GNSS data processing, and other specific studies such as those on satellite antenna calibration and clock stability. In light of these recent advances by the Polish scientific community, continuous progress in GNSS theory and processing algorithms is thought to be maintained in the future, and GNSS applications are expected to continue to proliferate.
Go to article

Authors and Affiliations

Jacek Paziewski
1
ORCID: ORCID
Tomasz Hadas
2
ORCID: ORCID
Witold Rohm
2
ORCID: ORCID
Paweł Wielgosz
1
ORCID: ORCID

  1. University of Warmia and Mazury, Olsztyn, Poland
  2. Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years, Global Navigation Satellite Systems (GNSS) have gained great importance in terms of the benefits it provides such as precise geodetic point positioning, determining crustal deformations, navigation, vehicle monitoring systems and meteorological applications etc. As in Turkey, for this purpose, each country has set up its own GNSS station networks like Turkish National Permanent RTK Network analyzed precise station coordinates and velocities together with the International GNSS Service , Turkish National Fundamental GPS Network and Turkish National Permanent GNSS Network (TNPGN) stations not only are utilized as precise positioning but also GNSS meteorology studies so total number of stations are increased. This work is related to the reactivated of the TRAB IGS station which was established in Karadeniz Technical University, Department of Geomatics Engineering. Within the COST ES1206 Action (GNSS4SWEC) KTU analysis center was established and Trop-NET system developed by Geodetic Observatory Pecny (GOP, RIGTC) in order to troposphere monitoring. The project titled “Using Regional GNSS Networks to Strengthen Severe Weather Prediction” was accepted to the scientific and technological research council of Turkey (TUBITAK). With this project, we will design 2 new constructed GNSS reference station network. Using observation data of network, we will compare water vapor distribution derived by GNSS Meteorology and GNSS Tomography. At this time, KTU AC was accepted as E-GVAP Analysis Centre in December 2016. KTU reference station is aimed to be a member of the EUREF network with these studies.
Go to article

Authors and Affiliations

Selma Zengin Kazancı
Emine Tanır Kayıkçı
Download PDF Download RIS Download Bibtex

Abstract

Contemporary mine exploitation requires information about the deposit itself and the impact of mining activities on the surrounding surface areas. In the past, this task was performed using classical seismic and geodetic measurements. Nowadays, the use of new technologies enables the determination of the necessary parameters in global coordinate systems. For this purpose, the relevant services create systems that integrate various methods of determining interesting quantities, e.g., seismometers / GNSS / PSInSAR. These systems allow detecting both terrain deformations and seismic events that occur as a result of exploitation. Additionally, they enable determining the quantity parameters that characterise and influence these events. However, such systems are expensive and cannot be set up for all existing mines. Therefore, other solutions are being sought that will also allow for similar research. In this article, the authors examined the possibilities of using the existing GNSS infrastructure to detect seismic events. For this purpose, an algorithm of automatic discontinuity detection in time series “Switching Edge Detector” was used. The reference data were the results of GNSS measurements from the integrated system (seismic / GNSS / PSInSAR) installed on the LGCB (Legnica-Głogów Copper Belt) area. The GNSS data from 2020 was examined, for which the integrated system registered seven seismic events. The switching Edge Detector algorithm proved to be an efficient tool in seismic event detection.
Go to article

Authors and Affiliations

Dariusz Tomaszewski
1
ORCID: ORCID
Jacek Rapiński
1
ORCID: ORCID
Lech Stolecki
2
ORCID: ORCID
Michał Śmieja
3
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn, Faculty of Geoengineering, Institute of Geodesy and Civil Engineering, 2 Oczapowskiego Str., Olsztyn, 10-900, Poland
  2. KGHM CUPRUM Sp. z.o.o. Research and Development Centre, gen. W. Sikorskiego Street 2-8, Wrocław, 53-659, Poland
  3. University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, Chair of Mechatronics, 2 Oczapowskiego Str., Olsztyn, 10-900, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper summarizes the contribution of Polish scientific units to the development of the Global Geodetic Observing System (GGOS) in recent years. We discuss the issues related to the integration of space geodetic techniques and co-location in space onboard Global Navigation Satellites Systems (GNSS) and Low Earth Orbiters (LEO), as well as perspectives introduced by the new European Space Agency’s (ESA) mission GENESIS. We summarize recent developments in terms of the European Galileo system and its contribution to satellite geodesy and general relativity, as well as ESA’s recent initiative – Moonlight to establish a satellite navigation and communication system for the Moon. Recent progress in troposphere delay modeling in Satellite Laser Ranging (SLR) allowed for better handling of systematic errors in SLR, such as range biases and tropospheric biases. We discuss enhanced tropospheric delay models for SLR based on numerical weather models with empirical corrections, which improve the consistency between space geodetic parameters derived using different techniques, such as SLR, GNSS, and Very Long Baseline Interferometry (VLBI). Finally, we review recent progress in the development of Polish GGOS scientific infrastructure in the framework of the European Plate Observing System project EPOS-PL¸.
Go to article

Authors and Affiliations

Krzysztof Sosnica
1
ORCID: ORCID
Radoslaw Zajdel
1
ORCID: ORCID
Jaroslaw Bosy
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Satellite-based positioning, which started being developed in the mid-1960s for military purposes, is now used in almost every area. For the studies single and/or double frequency receivers are used. The cost of a receiver and antenna couple that have capable of high coordinate accuracies ranges from $3000 to $15000. With the production of Original Equipment Manufacturer (OEM) receivers, the cost of satellite-based location determination decreases to approximately one in 10 for the civilian user compared to the operations performed with geodetic receivers and antennas. However, although these receivers collect data in multi-Global Navigation Satellite System (GNSS) and frequencies, the accuracy of the coordinate values estimated is not as high as geodetic receivers and antennas. Therefore, it is necessary to carry out an accuracy study to obtain information about which studies can be used in. In this study, measurements were made at the UZEL point located on the roof of the Yıldız Technical University Geomatics Engineering Department by using the ZED-F9P-02B OEM multi GNSS receiver and ANN-MB L1/L2 multi-band GNSS patch antenna. The performance of the test results has been examined by comparing the results from CSRS(Canadian Spatial Reference System)-PPP with the coordinates of the UZEL point. As a result of the comparison, the difference between the coordinate determined with collected 3.5 hr data and the coordinates of the UZEL point has been determined as – 1.4 cm, 2.8 cm, and 9.3 cm in the East, North, and Height directions, respectively
Go to article

Authors and Affiliations

Mustafa Fahri Karabulut
1
ORCID: ORCID
Nedim Onur Aykut
1
ORCID: ORCID
Burak Akpınar
1
ORCID: ORCID
Güldane Oku Topal
1
ORCID: ORCID
Zübeyir Bilal Çakmak
1
ORCID: ORCID
Bilge Doran
1
ORCID: ORCID
Ahmet Anıl Dindar
2
ORCID: ORCID
Cemal Özer Yiğit
2
ORCID: ORCID
Mert Bezcioğlu
2
ORCID: ORCID
Anıl Zafer
2
ORCID: ORCID

  1. Yildiz Technical University, Istanbul, Turkey
  2. Gebze Technical University, Gebze, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Unmanned aerial vehicles are increasingly being used in close range photogrammetry. Real-time observation of the Earth’s surface and the photogrammetric images obtained are used as material for surveying and environmental inventory. The following study was conducted on a small area (approximately 1 ha). In such cases, the classical method of topographic mapping is not accurate enough. The geodetic method of topographic surveying, on the other hand, is an overly precise measurement technique for the purpose of inventorying the natural environment components. The author of the following study has proposed using the unmanned aerial vehicle technology and tying in the obtained images to the control point network established with the aid of GNSS technology. Georeferencing the acquired images and using them to create a photogrammetric model of the studied area enabled the researcher to perform calculations, which yielded a total root mean square error below 9 cm. The performed comparison of the real lengths of the vectors connecting the control points and their lengths calculated on the basis of the photogrammetric model made it possible to fully confirm the RMSE calculated and prove the usefulness of the UAV technology in observing terrain components for the purpose of environmental inventory. Such environmental components include, among others, elements of road infrastructure, green areas, but also changes in the location of moving pedestrians and vehicles, as well as other changes in the natural environment that are not registered on classical base maps or topographic maps.
Go to article

Authors and Affiliations

Maciej Smaczyński
Beata Medyńska-Gulij
Download PDF Download RIS Download Bibtex

Abstract

Time series of weekly and daily solutions for coordinates of permanent GNSS stations may indicate local deformations in Earth’s crust or local seasonal changes in the atmosphere and hydrosphere. The errors of the determined changes are relatively large, frequently at the level of the signal. Satellite radar interferometry and especially Persistent Scatterer Interferometry (PSI) is a method of a very high accuracy. Its weakness is a relative nature of measurements as well as accumulation of errors which may occur in the case of PSI processing of large areas. It is thus beneficial to confront the results of PSI measurements with those from other techniques, such as GNSS and precise levelling. PSI and GNSS results were jointly processed recreating the history of surface deformation of the area of Warsaw metropolitan with the use of radar images from Envisat and Cosmo- SkyMed satellites. GNSS data from Borowa Gora and Jozefoslaw observatories as well as from WAT1 and CBKA permanent GNSS stations were used to validate the obtained results. Observations from 2000–2015 were processed with the Bernese v.5.0 software. Relative height changes between the GNSS stations were determined from GNSS data and relative height changes between the persistent scatterers located on the objects with GNSS stations were determined from the interferometric results. The consistency of results of the two methods was 3 to 4 times better than the theoretical accuracy of each. The joint use of both methods allows to extract a very small height change below the level of measurement error.
Go to article

Authors and Affiliations

Jan Krynski
Lukasz Zak
Dariusz Ziolkowski
Jan Cisak
Magdalena Lagiewska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents national report of Poland for IAG on positioning and applications. The selected research presented was carried out at leading Polish research institutions and concern precise multi-GNSS satellite positioning – relative and absolute – and also GNSS-based ionosphere and troposphere modelling and studies. The research resulted in noticeable advancements in these subjects confirmed by the development of new algorithms and methods. New and improved methods of precise GNSS positioning were developed, and also GNSS metrology was studied. New advanced troposphere models were presented and tested. In particular, these models allowed testing IPW variability on regional and global scales. Also, new regional ionosphere monitoring web-based services were developed and launched.
Go to article

Authors and Affiliations

Jerzy B. Rogowski
Paweł Wielgosz
Download PDF Download RIS Download Bibtex

Abstract

This paper summarizes the activity of the chosen Polish geodetic research teams in 2015–2018 in the fields of Earth: rotation, dynamics as well as magnetic field. It has been prepared for the needs of the presentation on the 27th International Union of Geodesy and Geodynamics General Assembly, Montreal, Canada. The part concerning Earth rotation is mostly focused on the use of modelling of diurnal and subdiurnal components of Earth rotation by including low frequency components of polar motion and UT1 in the analysis, study of free oscillations in Earth rotation derived from both space-geodetic observations of polar motion and the time variation of the second degree gravitational field coefficients derived from Satellite Laser Ranging (SLR) and Gravity Recovery and Climate Experiment (GRACE) observations, new methods of monitoring of Earth rotation, as well as studies on applications of the Ring Laser Gyroscope (RLG) for direct and continuous measurements of changes in Earth rotation and investigations of the hydrological excitation of polar motion. Much attention was devoted to the GRACE-derived gravity for explaining the influence of surface mass redistributions on polar motion. Monitoring of the geodynamical phenomena is divided into study on local and regional dynamics using permanent observations, investigation on tidal phenomena, as well as research on hydrological processes and sea level variation parts. Finally, the recent research conducted by Polish scientists on the Earth’s magnetic field is described.

Go to article

Authors and Affiliations

Janusz Bogusz
Aleksander Brzezinski
Jolanta Nastula
Keywords GGOS GNSS SLR VLBI EPOS-PL
Download PDF Download RIS Download Bibtex

Abstract

Global Geodetic Observing System (GGOS) was established in 2003 by the International Association of Geodesy (IAG) with the main goal to deepen understanding of the dynamic Earth system by quantifying human-induced Earth’s changes in space and time. GGOS allows not only for advancing Earth Science, including solid Earth, oceans, ice, atmosphere, but also for better understanding processes between different constituents forming the system Earth, and most importantly, for helping authorities to make intelligent societal decisions. GGOS comprises different components to provide the geodetic infrastructure necessary for monitoring the Earth system and global changes. The infrastructure spread from the global scale, through regional, to national scales. This contribution describes the GGOS structure, components, and goals with the main focus on GGOS activities in Poland, including both the development of the geodetic observing infrastructure as well as advances in processing geodetic observations supporting GGOS goals and providing high-accuracy global geodetic parameters.

Go to article

Authors and Affiliations

Krzysztof Sośnica
Jarosław Bosy
Download PDF Download RIS Download Bibtex

Abstract

Slope deformations, i.e., all types of landslides of rock masses (flow, creep, fall down, etc.), caused by gravitational forces, are the most widespread implementation of geological hazards and a negative geomorphological phenomenon that threatens the security of the population, destroy all utility values of the affected regions, negatively affects the environment, and cause considerable economic damage. Nowadays, the Global Navigation Satellite Systems (GNSS) provide accurate data for precise observations around the world due to the growing number of satellites from multiple operators, as well as more powerful and advanced technologies and the implementation of mathematical and physical models more accurately describing systematic errors that degrade GNSS observations such as ionospheric, tropospheric, and relativistic effects or multipath. The correct combination of measurement methods provides even more precise, i.e., better measurement results or estimates of unknown parameters. The combination of measurement procedures and their significant evaluations represent the essential attribute of deformation monitoring of landslides concerning the protection of the environment and the population’s safety in the interest areas for the sustainable development of human society. This article presents the establishment and use of a local geodetic network in particular local space for various needs. Depending upon the specific conditions, it is possible to use GNSS technology to obtain accurate observations and achieve the results applicable to the deformation survey for subsequent processing of the adjustment procedure.
Go to article

Authors and Affiliations

Gabriel Weiss
1
ORCID: ORCID
Slavomir Labant
1
ORCID: ORCID
Juraj Gasinec
1
ORCID: ORCID
Hana Stankova
2
ORCID: ORCID
Pavel Cernota
2
ORCID: ORCID
Erik Weiss
3
ORCID: ORCID
Roland Weiss
3
ORCID: ORCID

  1. Technical University of Kosice, Kosice, Slovakia
  2. VSB – Technical University of Ostrava, Ostrava, Czech Republic
  3. University of Economics in Bratislava, Bratislava, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Water vapour radiometers (WVR) provide information about temperature and humidity in the troposphere, with high temporal resolution when compared to the radiosonde (RS) observations. This technique can provide an additional reference data source for the zenith tropospheric delay (ZTD) estimated with the use of the Global Navigation Satellite System (GNSS). In this work, the accuracy of two newly installed radiometers was examined by comparison with RS observations, in terms of temperature (T), absolute humidity (AH), and relative humidity (RH), as well as for the ZTD. The impact of cloud covering and heavy precipitation events on the quality of WVR measurements was investigated. Also, the WVR data were compared to the GNSS ZTD estimates. The experiment was performed for 17 months during 2020 and 2021. The results show agreement between RS and WVR data at the level of 2◦C in T and 1 gm-3 in AH, whereas for RH larger discrepancies were noticed (standard deviation equal to 21%). Heavy precipitation increases WVR measurement errors of all meteorological parameters. In terms of ZTD, the comparison of WVR and RS techniques results in bias equal to –0.4 m and a standard deviation of 7.4 mm. The largest discrepancies of ZTD were noticed during the summer period. The comparison between the GNSS and WVR gives similar results as the comparison between the GNSS and RS (standard deviation 7.0–9.0 mm).
Go to article

Bibliography

Bauer, H.-S.,Wulfmeyer, V., Schwitalla, T. et al. (2011). Operational assimilation of GPS slant path delay measurements into the MM5 4DVAR system. Tellus A: Dynamic Meteorology and Oceanography, 63, 263–282. DOI: 10.1111/j.1600-0870.2010.00489.x.
Bengtsson, L. (2010). The global atmospheric water cycle. Environ. Res. Lett., 5, 202. DOI: 10.1088/1748-9326/5/2/025202.
Bennitt, G.V. and Jupp, A. (2012). Operational assimilation of GPS zenith total delay observations into the Met Office numerical weather prediction models. Mon. Weather Rev., 140, 2706–2719. DOI: 10.1175/MWR-D-11-00156.1.
Bevis, M., Businger, S., Chiswell, T.A. et al. (1994). Gps meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. Climatol., 33 (3), 379–386. DOI: 10.1175/1520-0450(1994)0330379:GMMZWD>2.0.CO;2.
Bock, O., Bosser, P., Pacione, R. et al. (2016). A high-quality reprocessed ground-based GPS dataset for atmospheric process studies, radiosonde and model evaluation, and reanalysis of HyMeX Special Observing Period. Q. J. R. Meteorol. Soc., 142, 56–71. DOI: 10.1002/qj.2701.
Böhm, J. and Schuh, H. (2013). Atmospheric effects in space geodesy. Springer. DOI: 10.1007/978-3-642-36932-2S.
Boniface, K., Ducrocq, V., Jaubert, G. et al. (2009). Impact of high-resolution data assimilation of GPS zenith delay on Mediterranean heavy rainfall forecasting. Ann. Geophys., 27, 2739–2753. DOI: 10.5194/angeo-27-2739-2009.
Brenot, H., Rohm, W., Kaˇcmaˇrík, M. et al. (2020). Cross-Comparison and methodological improvement in GPS tomography. Remote Sens., 12(1), 30. DOI: 10.3390/rs12010030.
Buehler, S., Östman, S., Melsheimer, C. et al. (2012). A multi-instrument comparison of integrated water vapour measurements at a high latitude site. Atmospheric Chem. Phys., 12, 10925–10943. DOI: 10.1.1.662.8109.
Churnside, J.H., Stermitz, T.A., and Schroeder, J.A. (1994). Temperature Profiling with Neural Network Inversion of Microwave Radiometer Data. J. Atmos. Ocean Technol., 11(1).
Crewell, S., and Lohnert, U. (2007). Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans.Geosci.Remote Sens., 45(7), 2195–2201. DOI: 10.1109/TGRS.2006.888434.
Dach, R., Lutz, S., Walser, P. et al. (2015). Bernese GNSS Software Version 5.2. User manual, Astronomical Institute. Universtiy of Bern: Bern Open Publishing.
Dai, A., Wang, J., Ware, R.H. et al. (2002). Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J. Geophys. Ress: Atmos., 107, ACL-11. DOI: 10.1029/2001JD000642.
Dymarska, N., Rohm, W., Sierny, J. et al. (2017). An assessment of the quality of near-real time GNSS observations as a potential data source for meteorology. Meteorol. Hydro. Water Managem. Res. Operational Applications, 5, 3–13. DOI: 10.26491/mhwm/65146.
Emardson, T.R., Johansson J.M., and Elgered G. (2000). The systematic behavior of water vapor estimates using four years of GPS observations. IEEE Trans. Geosci. Remote Sens., 38, 324–329. DOI: 10.1109/36.823927.
Ferraro, R.R., Kusselson, S.J., and Colton, M. (1998). An introduction to passive microwave remote sensing and its applications to meteorological analysis and forecasting. Polarization, 1(2). DOI: 10.1.1.662.8109.
Ferreira, J.A., Liberato, M.L., and Ramos, A.M. (2016). On the relationship between atmospheric water vapour transport and extra-tropical cyclones development. Phys. Chemis. Earth, Parts A/B/C, 94, 56–65. DOI: 10.1016/j.pce.2016.01.001.
Frate, F.D. and Schiavon, G. (1998). A combined natural orthogonal functions/neural network technique for the radiometric estimation of atmospheric profiles. Radio Sci., 33, 405–410. DOI: 10.1029/97RS02219.
Gradinarsky, L., Johansson, J., Bouma, H. et al. (2002). Climate monitoring using GPS. Phys. Chemis. Earth, Parts A/B/C, 27, 335–340. DOI: 10.1016/S1474-7065(02)00009-8.
Guerova, G., Brockmann, E., Schubiger, F. et al. (2005). An integrated assessment of measured and modeled integrated water vapor in Switzerland for the period 2001-03. J. Appl. Meteorol. Climatol., 44, 1033–1044. DOI: 10.1175/JAM2255.1.
Guerova, G., Jones, J., Douša, J. et al. (2016). Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmos. Meas. Tech., 9, 5385–5406. DOI: 10.5194/amt-9-5385-2016.
Haase, J., Ge, M., Vedel, H. et al. (2003). Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J. Appl. Meteorol., 42(11), 1547–1568. DOI: 10.1175/1520-0450(2003)0421547:AAVOGT>2.0.CO;2.
Hanna, N., Trzcina, E., Möller, G. et al. (2019). Assimilation of GNSS tomography products into WRF using radio occultation data assimilation operator. Atmos. Meas.Tech.s Discuss., 1–32. DOI: 10.5194/amt-12-4829-2019.
Ingram,W. (2010). A very simple model for the water vapour feedback on climate change. Quarterly J. R. Meteorol. Soc., 136, 30–40. DOI: 10.1002/qj.546.
Jacob, D. (2001). The role of water vapour in the atmosphere. A short overview from a climate modeller’s point of view. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26, 523–527. DOI: 10.1016/S1464-1895(01)00094-1.
Jung, T., Ruprecht, E., and Wagner, F. (1998). Determination of cloud liquid water path over the oceans from Special Sensor Microwave/Imager (SSM/I) data using neural networks. J. Appl. Meteorol., 37, 832–844. DOI: 10.1175/1520-0450(1998)0370832:DOCLWP>2.0.CO;2.
Karabati´c, A., Weber, R., and Haiden, T. (2011). Near real-time estimation of tropospheric water vapour content from ground based GNSS data and its potential contribution to weather now-casting in Austria. Adv. Space Res., 47, 1691–1703. DOI: 10.1016/j.asr.2010.10.028.
Kleijer, F. (2004). Troposphere modeling and filtering for precise GPS leveling. Ph.D. thesis. TU Delft: Delft University of Technology. DOI: 10.26491/mhwm/65146.
Kryza, M., Werner, M., Wałszek, K. et al. (2013). Application and evaluation of the WRF model for high-resolution forecasting of rainfall-a case study of SW Poland. Meteorologische Zeitschrift, 22, 595–601. DOI: 10.1127/0941-2948/2013/0444.
Liang, H., Cao, Y., Wan, X. et al. (2015). Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn., 6, 135–142. DOI: 10.1016/J.GEOG.2015.03.001.
Liou, Y.-A., Teng, Y.-T., Van Hove, T. et al. (2001). Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J. Appl. Meteorol., 40, 5–15. DOI: 10.1175/1520-0450(2001)0400005:COPWOI>2.0.CO;2.
Liu, J., Sun, Z., Liang, H. et al. (2005). Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res. Atmos., 110. DOI: 10.1029/2004JD005715.
Löhnert, U., Turner, D.D., and Crewell, S. (2009). Ground-Based Temperature and Humidity Profiling Using Spectral Infrared and Microwave Observations. Part I: Simulated Retrieval Performance in Clear-Sky Conditions. J. Appl. Meteorol. Climatol., 48(5), 1017–1032. DOI: 10.1175/2008JAMC2060.1.
Löhnert, U., and Maier, O. (2012). Operational profiling of temperature using ground-based microwave radiometry at Payerne: Prospects and challenges. Atmos. Meas. Tech., 5(5), 1121–1134. DOI: 10.5194/amt-5-1121-2012.
Lu, C., Li, X., Li, Z. et al. (2016). GNSS tropospheric gradients with high temporal resolution and their effect on precise positioning. J. Geophys. Res. Atmos., 121, 912–930. DOI: 10.1002/2015JD024255.
Mahfouf, J.-F., Ahmed, F., Moll, P. et al. (2015). Assimilation of zenith total delays in the AROME France convective scale model: a recent assessment. Tellus A: Dyn. Meteorol. Oceanogr., 67, 26106. DOI: 10.3402/tellusa.v67.26106.
Massaro, G., Stiperski, I., Pospichal, B. et al. (2015). Accuracy of retrieving temperature and humidity profiles by ground-based microwave radiometry in truly complex terrain. Atmos. Meas. Tech., 8(8), 3355–3367. DOI: 10.5194/amt-8-3355-2015.
Miloshevich, L.M., Paukkunen, A., Vömel, H. et al. (2004). Development and validation of a time-lag correction for Vaisala radiosonde humidity measurements. J. Atmos. Oceanic Tech., 21, 1305–1327. DOI: 10.1175/1520-0426(2004)0211305:DAVOAT>2.0.CO;2.
Möller, G., Wittmann, C., Yan, X. et al. (2015). 3D ground based GNSS atmospheric tomography. Final report, FFG project GNSS-ATom (ID:840098).
Morland, J., Collaud Coen, M., Hocke, K. et al. (2009). Tropospheric water vapour above Switzerland over the last 12 years. Atmos. Chemis. Phys., 9, 5975–5988, 2009. DOI: 10.5194/acp-9-5975-2009.
Ning, T. and Elgered, G. (2021). High temporal resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations. Atmos. Meas. Tech. Discuss., 1–21. DOI: 10.5194/amt-14-5593-2021.
Offiler, D. (2010). EIG EUMETNET GNSSWater Vapour Programme (E-GVAP-II) Product Requirements Document. Tech. rep. EIG EUMETNET.
Ohtani, R. and Naito, I. (2000). Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. Atmos., 105, 26917–26929. DOI: 10.1029/2000JD900362.
Pacione, R., Pace, B., Vedel, H. et al. (2011). Combination methods of tropospheric time series. Adv. Space Res. DOI: 10.1016/j.asr.2010.07.021.
Pacione, R., Araszkiewicz, A., Brockmann, E. et al. (2017). EPN-Repro2: A reference GNSS tropospheric data set over Europe. Atmos. Meas. Tech., 10, 1689–1705. DOI: 10.5194/amt-10-1689-2017.
Rocken, C., Van Hove, T., Johnson et al. (1995). GPS/STORM–GPS sensing of atmospheric water vapor for meteorology. J. Atmos. Oceanic Technol., 12, 468–478. DOI: 10.1175/1520-0426(1995)0120468:GSOAWV>2.0.CO;2.
Rohm, W., Guzikowski, J., Wilgan, K. et al. (2019). 4DVAR assimilation of GNSS zenith path delays and precipitable water into a numerical weather prediction model WRF. Atmos. Meas.Tech., 12, 345–361. DOI: 10.5194/amt-12-345-2019.
RPG: Operation Principles and Software Description for RPG standard single polarization radiometers (G5series), Radiometer Physics GmbH,Werner-von-Siemens-Str. 4, 53340 Meckenheim, Germany, 12 edn., https://www.radiometer-physics.de, 2017.
Sá, A., Rohm, W., Fernandes, R.M. et al. (2021). Approach to leveraging real-time GNSS tomography usage. J. Geod., 95(1), 1–21. DOI: 10.1007/s00190-020-01464-7.
Shangguan, M., Heise, S., Bender, M. et al. (2015). Validation of GPS atmospheric water vapor with WVR data in satellite tracking mode. Annal. Geophys., 33, 55–61. DOI: 10.5194/angeo-33-55-2015.
Skamarock, W.C., Klemp, J.B., Dudhia, J. et al. (2008). A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR. DOI: 10.5065/D68S4MVH.
Solheim, F., Godwin, J.R., Westwater, E. et al. (1998). Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods. Radio Sci., 33, 393–404. DOI: 10.1029/97RS03656.
Thayer, G.D. (1974). An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807. DOI: 10.1029/RS009i010p00803.
Tonda´s, D., Kapłon, J., and Rohm, W. (2020). Ultra-fast near real-time estimation of troposphere parameters and coordinates from GPS data. Measurement, 107849. DOI: 10.1016/j.measurement.2020.107849.
Trzcina, E. and Rohm,W. (2019). Estimation of 3D wet refractivity by tomography, combining GNSS and NWP data: First results from assimilation of wet refractivity into NWP. Q. J. R. Meteorol. Soc., 145, 1034–1051. DOI: 10.1002/qj.3475.
Trzcina, E., Hanna, N., Kryza, M. et al. (2020). TOMOREF Operator for Assimilation of GNSS TomographyWet Refractivity Fields in WRF DA System. J. Geophys. Res. Atmos., 125, e2020JD032, 451. DOI: 10.1029/2020JD032451.
Ulaby, F., Moore, R., and Fung, A. (1986). An improved equation for the radio refractive index of air. Artech House, I–II. DOI: 10.1029/RS009i010p00803.
Van Baelen, J., Aubagnac, J.-P., and Dabas, A. (2005). Comparison of near–real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. J. Atmos. Oceanic Tech., 22, 201–210. DOI: 10.1175/JTECH-1697.1.
Van Baelen, J., Reverdy, M., Tridon, F. et al. (2011). On the relationship between water vapour field evolution and the life cycle of precipitation systems. Q. J. R. Meteorol. Soc., 137, 204–223. DOI: 10.1002/qj.785.
Vey, S., Dietrich, R., Rülke, A. et al. (2010). Validation of precipitable water vapor within the NCEP/DOE reanalysis using global GPS observations from one decade. J. Clim., 23, 1675–1695. DOI: 10.1175/2009JCLI2787.1.
Wang, J. and Liu, Z. (2019). Improving GNSS PPP accuracy through WVR PWV augmentation. J. Geod., 93, 1685–1705. DOI: 10.1007/s00190-019-01278-2.
Wilgan, K., Rohm, W., and Bosy, J. (2015). Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model. Atmos. Res., 156, 29–42. DOI: 10.1016/j.atmosres.2014.12.011.
Zhao, Q., Yao, Y., Yao, W. et al. (2019a). GNSS-derived PWV and comparison with radiosonde and ECMWF ERA-Interim data over mainland China. J. Atmos. and Sol.-Terr. Phys., 182, 85–92. DOI: 10.1016/j.jastp.2018.11.004.
Zhao, Y., Xu, X., Zhao, T. et al. (2019b). Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. Intern. J. Climat., 39, 3121–3133. DOI: 10.1002/joc.6000.
Zus, F., Wickert, J., Bauer, H.S. et al. (2011). Experiments of GPS slant path data assimilation with an advanced MM5 4DVAR system. Meteorologische Zeitschrift, 173–184. DOI: 10.1127/0941-2948/2011/0232.
Go to article

Authors and Affiliations

Estera Trzcina
1
Damian Tondaś
1
ORCID: ORCID
Witold Rohm
1
ORCID: ORCID

  1. Wroclaw University of Environmental and Life Science, Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Position time series from permanent Global Navigation Satellite System (GNSS) stations are commonly used for estimating secular velocities of discrete points on the Earth’s surface. An understanding of background noise in the GNSS position time series is essential to obtain realistic estimates of velocity uncertainties. The current study focuses on the investigation of background noise in position time series obtained from thirteen permanent GNSS stations located in Nepal Himalaya using the spectral analysis method. The power spectrum of the GNSS position time series has been estimated using the Lomb–Scargle method. The iterative nonlinear Levenberg–Marquardt (LM) algorithm has been applied to estimate the spectral index of the power spectrum. The power spectrum can be described by white noise in the high frequency zone and power law noise in the lower frequency zone. The mean and the standard deviation of the estimated spectral indices are −1.46±0.14,−1.39±0.16 and −1.53±0.07 for north, east and vertical components, respectively. On average, the power law noise extends up to a period of ca. 21 days. For a shorter period, i.e. less than ca. 21 days, the spectra are white. The spectral index corresponding to random walk noise (ca. –2) is obtained for a site located above the base of a seismogenic zone which can be due to the combined effect of tectonic and nontectonic factors rather than a spurious monumental motion. Overall, the usefulness of investigating the background noise in the GNSS position time series is discussed.

Go to article

Authors and Affiliations

Jagat Dwipendra Ray
M. Sithartha Muthu Vijayan
Walyeldeen Godah
ORCID: ORCID
Ashok Kumar
Download PDF Download RIS Download Bibtex

Abstract

In this study, several variants create and choose of a local quasi-geoid model in Poland have been considered. All propositions have a source in European Gravimetric Geoid models – EGG2008 and EGG2015, which are purely gravimetric models of reference surface. In the course of this work, each model has been analyzed in various ways: without any corrections, by parallel shifting of residuals, by the 7-parameter conformal transformation and by fitting residuals by 4- and 5-parameter trigonometric polynomials. Eventual corrections were based on points of national GNSS/levelling networks (EUVN, EUVN_DA, POLREF, EUREF and ASG-EUPOS eccentric points). As a final result of this study, a comparison of the accuracy of selected models has been carried out by RMSE statistics and maps showing spatial distribution of residuals and histograms. Validation has shown that the maximum achievable accuracy of the EGG models is approximately 2 cm for the ETRF2000 reference system and approximately 8 cm for ETRF89. In turn, fitting with the use of different mathematical methods results in an improvement of the standard deviation of residues to the level of 1.3–1.4 cm. The conclusions include an evaluation of considerations for and against the use of models based only on EGG realizations and, on the other hand, fitted to the points of Polish vertical network. Its usefulness is strictly connected with needs of the definition of up to date quasi-geoid model for the new realization of heights system in Poland, based on EVRF2007 frame.

Go to article

Authors and Affiliations

Dorota Marjańska
Tomasz Olszak
Dominik Piętka
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research on the development of a method for improving the positioning accuracy of an UAV equipped with a single-frequency GPS receiver for determining the linear elements of exterior orientation in aerial photogrammetry. Thus, the paper presents a computational strategy for improving UAV position determination using the SPP code method and the products of the IGS service. The developed algorithmswere tested in two independent research experiments performed with theUAVplatform on which an AsteRx-m2 UAS single-frequency receiver was installed. As a result of the experiments, it was shown that the use of IGS products in the SPP code method made it possible to improve the accuracy of the linear elements to the level of about ±2.088 m for X coordinate, ±1.547 m for Y coordinate, ±3.712 m for Z coordinate. The paper also shows the trend of changes in the obtained accuracy in determining linear elements of exterior orientation in the form of a linear regression function. Finally, the paper also applies the SBAS corrections model for the improvement of UAV position calculation and determination of linear elements of exterior orientation. In this case, the improvement in the accuracy of determining the linear elements of exterior orientation is about ±1.843 m for X coordinate, ±1.658 m for Y coordinate, ±7.930 m for Z coordinate. As the obtained test results show, the use of IGS products and SBAS corrections in the SPP code method makes it possible to improve the determination ofUAVpositions for the use in aerial photogrammetry. Keywords: UAV, GNSS measurements, linear elements of exterior orientation, accuracy.
Go to article

Authors and Affiliations

Kamil Krasuski
1
Damian Wierzbicki
2
Marta Lalak
1
Adam Ciecko
3

  1. Polish Air Force University, Institute of Navigation, Dywizjonu 303/35 Street, 08-521 Deblin, Poland
  2. Military University of Technology, Faculty of Civil Engineering and Geodesy, Department of Imagery Intelligence,gen. S. Kaliskiego 2 Street, 00-908 Warsaw, Poland
  3. University of Warmia and Mazury, Faculty of Geoengineering, M. Oczapowskiego 2 Street, 10-724 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the summary of research activities carried out in Poland in 2011–2014 in the field of Earth rotation and geodynamics by several Polish research institutions. It contains a summary of works on Earth rotation, including evaluation and prediction of its parameters and analysis of the related excitation data as well as research on associated geodynamic phenomena such as geocentre motion, global sea level change and hydrological processes. The second part of the paper deals with monitoring of geodynamic phenomena. It contains analysis of geodynamic networks of local, and regional scale using space (GNSS and SLR) techniques, Earth tides monitoring with gravimeters and water-tube hydrostatic clinometer, and the determination of secular variation of the Earth’ magnetic field.
Go to article

Authors and Affiliations

Janusz Bogusz
Aleksander Brzezinski
Wiesław Kosek
Jolanta Nastula
Download PDF Download RIS Download Bibtex

Abstract

This paper presents accuracy characteristics of determining the position of corners of building structures with RTN GNSS surveying, using indirect methods of measurement. The studies included the following methods: a point on a straight line, intersection of straight lines and distance-distance intersection. The research experiment analyzed the coordinates of the corners of building structures obtained from the surveys and the mean errors of their position as well as mutual relationships of check measurements, or tie distances. The accuracy analysis also took into account base errors deter- mined in real time. Statistical analysis of these parameters was carried out, as a result of which a distance-distance intersection method was very well rated. For other methods, the results were diversified. The article also emphasizes a need to search for other solutions to modernize the indirect methods of measurement in such a way that their use in RTN GNSS surveys would give results most probable when compared to the real ones.
Go to article

Authors and Affiliations

Robert Krzyżek
Download PDF Download RIS Download Bibtex

Abstract

This review paper presents research results on geodetic positioning and applications carried out in Poland, and related to the activities of the International Association of Geodesy (IAG) Commission 4 “Positioning and Applications” and its working groups. It also constitutes the chapter 4 of the national report of Poland for the International Union of Geodesy and Geodynamics (IUGG) covering the period of 2015-2018. The paper presents selected research, reviewed and summarized here, that were carried out at leading Polish research institutions, and is concerned with the precise multi-GNSS (Global Navigation Satellite Systems) satellite positioning and also GNSS-based ionosphere and troposphere modelling and studies. The research, primarily carried out within working groups of the IAG Commission 4, resulted in important advancements that were published in leading scientific journals. During the review period, Polish research groups carried out studies on multi-GNSS functional positioning models for both relative and absolute solutions, stochastic positioning models, new carrier phase integer ambiguity resolution methods, inter system bias calibration, high-rate GNSS applications, monitoring terrestrial reference frames with GNSS, assessment of the real-time precise satellite orbits and clocks, advances in troposphere and ionosphere GNSS remote sensing methods and models, and also their applications to weather, space weather and climate studies.

Go to article

Authors and Affiliations

Paweł Wielgosz
Tomasz Hadaś
Anna Kłos
Jacek Paziewski
Download PDF Download RIS Download Bibtex

Abstract

GNSS systems are susceptible to radio interference despite then operating in a spread spectrum. The commerce jammers power up to 2 watts that can block the receiver function at a distance of up to 15 kilometers in free space. Two original methods for GNSS receiver testing were developed. The first method is based on the usage of a GNSS simulator for generation of the satellite signals and a vector signal RF generator for generating different types of interference signals. The second software radio method is based on a software GNSS simulator and a signal processing in Matlab. The receivers were tested for narrowband CW interference, FM modulated signal and chirp jamming signals and scenarios. The signal to noise ratio usually drops down to 27 dBc-Hz while the jamming to signal ratio is different for different types of interference. The chirp signal is very effective. The jammer signal is well propagated in free space while in the real mobile urban and suburban environment it is usually strongly attenuated.

Go to article

Authors and Affiliations

Tomáš Morong
Pavel Puričer
Pavel Kovář
Download PDF Download RIS Download Bibtex

Abstract

The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned

aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for airborne

MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability

for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global

navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics,

a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment

problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse impacts

of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed

alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement outliers,

which has a significant performance improvement compared with its traditional counterparts.

Go to article

Authors and Affiliations

Dingjie Wang
Yi Dong
Qingsong Li
Jie Wu
Yule Wen
Download PDF Download RIS Download Bibtex

Abstract

The primary objective of the case study is to improve monitoring, controlling, planning and managing the extraction processes in surface lignite mining. Under the North Bohemian Lignite Basin (also Most Basin) conditions and the Sokolov Basin, wheeled excavators are deployed as the main technology for extracting coal and overlying rock. Their real-time spatial position can be tracked based on data from GNSS technology, inclinometers, and incremental rotary encoders. The measured data is sent to a remote server and stored in the database. It also serves to calculate volumes of extracted masses. Volume calculation, space position visualisation, and wheel boom movements are performed in KVASoftware. It is a program designed for modelling and designing quarries. Knowing the position of the wheel against the digital terrain (quarry), the model is essential for the implementation of many risk-elimination applications, namely with respect to the geological conditions, occupational safety, observance of the profile grade line, the area of extraction, qualitative parameters of the raw material, etc. The mathematical model of backfilling extracted materials is also an integral part of the above-mentioned system.
Go to article

Bibliography

[1] J. Benndorf, Mike W.N. Buxton, Sensor-based real-time resource model reconciliation for improved mine production control – a conceptual framework. Mining Technology 125, 1, 54-64 (2016). DOI: https://doi.org/10.1080/14749009.2015.1107342
[2] GeoTel s.r.o., KVA Software, Z jišťování polohy kolesa rýpadla K 800/103/N1 pomocí GP S [GP S – A ided D etermination of the Position of the Bucket Wheel of the K800 Excavator"
[3] Team of authors, Hornická ročenka 2017 [Mining yearbook 2017]: Ostrava, Montanex. ISBN 978-80-7225-454-5, (2018), (in Czech).
[4] D. Sladková, R. Kapica, M. Vrubel, M. Michalusová, Výpočty objemů odtěžených hmot v reálném čase [Calculations of volumes of excavated masses in real-time]. Z pravodaj hnědé uhlí. Most: V ýzkumný ústav pro hnědé uhlí a.s. 2, 10-15 (2012), ISSN 1213-1660, (in Czech).
[5] D. Vrublová, R. Kapica, B . Gibesová, J. Mudruňka, A . Struś, Application of GNSS technology in surface mining. Geodesy and Cartography 42, 4, 122-128 (2016). ISSN: 20296991, DOI: https://doi.org/10.3846/20296991.2016.1268433
[6] D. Vrublová, R. Kapica, M. Vrubel, E . Jiránková, Přesnost určování prostorové polohy kolesa rýpadel [Accuracy of the spatial position determination of excavator wheels]. Z pravodaj hnědé uhlí. Most: V ýzkumný ústav pro hnědé uhlí a. s. 3, 10-15 (2015), ISSN 1213-1660, (in Czech).
[7] J. Benndorf, Making Use of Online Production Data: Sequential Updating of Mineral Resource Models. Mathematical Geosciences 47 (5), 547-563 (2015). DOI: https://doi.org/10.1007/s11004-014-9561-y
[8] M. Vrubel, D. Sládková, M. Talácko, New possibilities of GPS technology in mine surveying. In Proceedings of the 13th International Congress of ISM, Budapest, ISBN 978-963-9038-18-9 (2007).
[9] D. Vrublová, M. Vrubel, I. Maňas, L. Nábělková, Surveying system for bucket wheel excavators and spreaders tracking as a contribution to automation of mining process at Severočeské doly a.s.. In the Proceedings of the International Conference of Geodesy and Mining Surveying 2018: XXV. SDMG conference, 24-26. October 2018, Pilsen. VSB – Technical University of Ostrava, (2018), (in Czech).
[10] J.W. Van Der Merwe, D.C. Andersen, Applications and benefits of 3D laser scanning for the mining industry. Journal of the Southern African Institute of Mining and Metallurgy 113 (3), 213-219 (2013). ISSN: 2225 6253.
[11] Nebojša B. Gnjatović, Srđan M. Bošnjak, Ivan Lj. Milenović, Aleksandar Z. Stefanović, Bucket wheel excavators: Dynamic response as a criterion for validation of the total number of buckets. Engineering Structures 225, 111313 (2020). ISSN 0141-0296, DOI: https://doi.org/10.1016/j.engstruct.2020.111313
[12] D. Sladková, R. Kapica, M. Vrubel, Global navigation satellite system (GNSS) technology for automation of surface mining. International Journal of Mining Reclamation and Environment 25 (3), 284-294, ISSN: 17480930, (2011). DOI: https://doi.org/10.1080/17480930.2011.608879
[13] I. Maňas, Princip generování ploch a výpočtů objemů v Báňském modelu [The principle of generating surfaces and calculating volumes in the Mining Model]. Technická zpráva k programu [Technical report to the program], (2010). (in Czech).
[14] L. Horák, Návrh klasifikace tektonických zlomů z pohledu jejich rizikovosti pro postupy kolesových velkorýpadel [Draft classification of tectonic faults in view of their risk level for the process of large bucket wheel excavators], posudek [assessment]. GeoTec, (2009). (in Czech).
[15] R. Kapica, D. Vrublová, M. Vrubel, The system of tracking the position of the bucket excavator’s wheel for prevention of risk situations. Acta Geodyn. Geomater. 15, 3 (191), 277-287, (2018). DOI: https://doi.org/10.13168/ AGG.2018.0020
[16] E. Jiránková, Utilisation of surface subsidence measurements in assessing failures of rigid strata overlying extracted coal seams. Int. J. Rock Mech. Min. Sci. 53, 111-119, (2012). DOI: https://doi.org/10.1016/j.ijrmms.2012.05.007
[17] L. Al-Shrouf, N. Szczepanski, D. Söffker, Online feature-based multisensor object detection system for bucket-wheel excavators. Int J Adv Manuf Technol 82, 1213-1226 (2016). DOI: https://doi.org/10.1007/s00170-015-7375-9
[18] J. Polák, K. Bailotti, J. Pavliska, L. Hrabovský, Dopravní a manipulační zařízení II [Transport and handling equipment]. Ostrava, VSB-Technical university of Ostrava, (2003). ISBN 80-248-0493-X. (in Czech).
[19] Y. Yuan, Y., Lv, L., Wang, S. et al., Multidisciplinary co-design optimization of structural and control parameters for bucket wheel reclaimer. Front. Mech. Eng. 15, 406-416 (2020). DOI: https://doi.org/10.1007/s11465-019-0578-2
Go to article

Authors and Affiliations

Dana Vrublová
1
ORCID: ORCID
Roman Kapica
2
ORCID: ORCID
Stanislav Smelik
3
ORCID: ORCID
Markéta Smeliková
3
ORCID: ORCID

  1. VŠB – Technical University of Ostrava , Faculty of Mining and Geology, Institute of Combined Studies in Most, Dělnická 21, Most, Czech Republic
  2. VŠB – Technical University of Ostrava, Faculty of Mining and Geology, Department of Geodesy and Mine Surveying, 17. listopadu 15, Ostrava – Poruba, 708 00, Czech Republic
  3. Geodetic Office, Baška 111, 739 01 Baška, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The article discusses the applicability of a novel method to determine horizontal curvature of the railway track axis based on results of mobile satellite measurements. The method is based on inclination angle changes of a moving chord in the Cartesian coordinate system. In the presented case, the variant referred to as the method of two virtual chords is applied. It consists in maneuvering with only one GNSS (Global Navigation Satellite System) receiver. The assumptions of the novel method are formulated, and an assessment of its application in the performed campaign of mobile satellite measurements is presented. The shape of the measured railway axis is shown in the national spatial reference system PL-2000, and the speed of the measuring trolley during measurement is calculated based on the recorded coordinates. It has been observed that over the test section, the curvature ordinates differ from the expected waveform, which can be caused by disturbances of the measuring trolley trajectory. However, this problem can easily be overcome by filtering the measured track axis ordinates to obtain the correct shape – this refers to all track segments: straight sections, circular arcs and transition curves. The virtual chord method can also constitute the basis for assessing the quality of the recorded satellite signal. The performed analysis has shown high accuracy of the measuring process.
Go to article

Bibliography

  1. British railway track design, construction and maintenance. 6th ed., The Permanent Way Institution, London, UK, 1993.
  2. 883.2000 DB_REF-Festpunktfeld, DB Netz AG, Berlin, Germany, 2016.
  3. Railway applications—Track—Track alignment design parameters—Track gauges 1435 mm and wider—Part 1: Plain line, EN 13803-1, CEN, Brussels, Belgium, 2010.
  4. Code of federal regulations title 49 transportation, US Government Printing Office, Washington, DC, USA, 2008.
  5. Standard: Railway Surveying, Version 1.0, T HR TR 13000 ST, NSW Government (Transport for NSW), Sydney, Australia, 2016.
  6. NR/L3/TRK/0030 NR_Reinstatement of Absolute Track Geometry (WCRL Routes), no. 1, NR, London, UK, 2008.
  7. Standardy Techniczne – Szczegółowe warunki techniczne dla modernizacji lub budowy linii kolejowych do predkości Vmax   200 km/h (dla taboru konwencjonalnego) / 250 km/h (dla taboru z wychylnym pudłem) – TOM I – DROGA SZYNOWA – Załącznik ST-T1_A6: Układy geometryczne torów, PKP Polskie Linie Kolejowe, Warszawa, 2018.
  8.  L. Wang et al., “Validation and assessment of multi-GNSS real-time Precise Point Positioning in simulated kinematic mode using IGS real-time service,” Remote. Sensing, vol. 10, pp. 1‒19, 2018, doi: 10.3390/rs10020337.
  9.  Y. Quan, and L. Lau, “Development of a trajectory constrained rotating arm rig for testing GNSS kinematic positioning,” Measurement, vol. 140, pp. 479–485, 2019, doi: 10.1016/j.measurement.2019.04.013.
  10.  R.M. Alkan, “Cm-level high accurate point positioning with satellite-based GNSS correction service in dynamic applications,” J. Spatial Sci., vol. 66, no. 2, pp. 351‒359, 2019, doi: 10.1080/14498596.2019.1643795.
  11.  W. Domski, and A. Mazur, “Input-output decoupling for a 3D free-floating satellite with a 3R manipulator with state and input disturbances,” Bull. Pol. Acad. Sci. Tech. Sci., vol.  67, no. 6, pp. 1031‒1039, 2019, doi: 10.24425/bpasts.2019.130885.
  12.  S. Wu et al., ”Improving ambiguity resolution success rate in the joint solution of GNSS-based attitude determination and relative positioning with multivariate constraints,” GPS Solutions, vol. 24, no. 1, article number: 31, 2020, doi: 10.1007/s10291-019-0943-y.
  13.  W. Koc and C. Specht, “Application of the Polish active GNSS geodetic network for surveying and design of the railroad,” in Proc. First International Conference on Road and Rail Infrastructure – CETRA 2010, Opatija, Croatia, Univ. of Zagreb, 2010, pp. 757‒762.
  14.  W. Koc and C. Specht, “Selected problems of determining the course of railway routes by use of GPS network solution,” Arch. Transp., vol. 23, no. 3, pp. 303‒320, 2011.
  15.  W. Koc, C. Specht, and P. Chrostowski, “Finding deformation of the straight rail track by GNSS measurements,” Annu. Navig., no. 19, part 1, pp. 91‒104, 2012, doi: 10.2478/v10367-012-0008-6.
  16.  W. Koc, C. Specht, P. Chrostowski, and J. Szmagliński, “Analysis of the possibilities in railways shape assessing using GNSS mobile measurements,” MATEC Web Conf., vol. 262, no. 4, p.  11004(1‒6), 2019, doi: 10.1051/matecconf/201926211004.
  17.  W. Koc, C. Specht, J. Szmagliński, and P. Chrostowski, “A method for determination and compensation of a cant influence in a track centerline identification using GNSS methods and inertial measurement,” Appl. Sci., vol. 9, no. 20, p.  4347(1‒16), 2019, doi: 10.3390/ app9204347.
  18.  C. Specht and W. Koc, “Mobile satellite measurements in designing and exploitation of rail roads,” Transp. Res. Procedia, vol. 14, pp. 625‒634, 2016, doi: 10.1016/j.trpro.2016.05.310.
  19.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “The analysis of tram tracks geometric layout based on mobile satellite measurements,” Urban Rail Transit, vol. 3, no. 4, pp.  214‒226, 2017, doi: 10.1007/s40864-017-0071-3.
  20.  C. Specht, W. Koc, P. Chrostowski, and J. Szmagliński, “Accuracy assessment of mobile satellite measurements in relation to the geometrical layout of rail tracks,” Metrol. Meas. Syst., vol. 26, no. 2, pp. 309‒321, 2019, doi: 10.24425/mms.2019.128359.
  21.  P. Dąbrowski et al., “Installation of GNSS receivers on a mobile platform – methodology and measurement aspects,” Scientific Journals of the Maritime University of Szczecin, vol. 60, no.  132, pp. 18‒26, 2019, doi: 10.3390/jmse8010018.
  22.  A. Wilk et al., “Research project BRIK: development of an innovative method for determining the precise trajectory of a railway vehicle,” Transp. Oveview – Przegląd Komunikacyjny, vol. 74, no. 7, pp. 32‒47, 2019, doi: 10.35117/A_ENG_19_07_04.
  23.  L. Marx, “Satellitengestützte Gleisvermessung – auch beim Oberbau,” EI – Eisenbahningenieur, vol. 58, no. 6, pp. 9‒14, 2007.
  24.  Y. Naganuma, T. Yasukuni, and T. Uematsu, “Development of an inertial track geometry measuring trolley and utilization of its high- precision data,” Int. J. Transp. Dev. Integr., vol. 3, no. 3, pp. 271–285, 2019, doi: 10.2495/TDI-V3-N3-271-285.
  25.  C. Qijin et al., “A railway track geometry measuring trolley system based on aided INS,” Sensors, vol. 18, no. 2, p. 538, 2018, doi: 10.3390/ s18020538.
  26.  T. Strübing, “Kalibrierung und Auswertung von lasertriangulations-basierten Multisensorsystemen am Beispiel des Gleisvermessungs- systems RACER II,” Schriften des Instituts für Geodäsie der Universität der Bundeswehr München, Dissertationen, Heft 91, 2015.
  27.  T. Weinold and A. Grimm-Pitzinger, “Die Lagerung der Gleisvermessungen der ÖBB,” Vermessung & Geoinformation, vol. 7, no. 3, pp. 348–352, 2012.
  28. Rail design in Civil 3D, Autodesk, San Rafael, USA, 2019.
  29. An application for preliminary and detailed 3D design of rail infrastructure V8i PL, Bentley Systems, Exton, USA, 2019.
  30. BIM-ready railway design solution, CGS Labs, Ljubljana, Slovenia, 2018.
  31.  W. Koc, “The method of determining horizontal curvature in geometrical layouts of railway track with the use of moving chord,” Arch. Civil Eng., vol. 66, no. 4, pp. 579–591, 2020, doi: 10.24425/ace.2020.135238.
  32.  W. Koc, “Design of rail-track geometric systems by satellite measurement,” J. Transp. Eng., vol. 138, no. 1, pp. 114‒122, 2012, doi: 10.1061/(ASCE)TE.1943-5436.0000303.
  33.  A. Wilk, C. Specht, K. Karwowski et al., “Correction of determined coordinates of railway tracks in mobile satellite measurements,” Diagnostyka, vol. 21, no. 3, pp. 77‒85, 2020, doi: 10.29354/diag/125626.
  34.  A. Wilk et al., “Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle,” Measurement, vol. 175, p. 109016, 2021, doi: 10.1016/j. measurement.2021.109016.
  35.  A. Wilk, W. Koc, C. Specht, S. Judek et al., “Digital filtering of railway track coordinates in mobile multi–receiver GNSS measurements,” Sensors, vol. 20, p. 5018(1–20), 2020, doi: 10.3390/s20185018.
  36.  C. Specht et al., “Verification of GNSS measurements of the railway track using standard techniques for determining coordinates,” Remote Sensing, vol. 12, p. 2874(1‒24), 2020, doi: 10.3390/rs12182874.
Go to article

Authors and Affiliations

Władysław Koc
1
ORCID: ORCID
Andrzej Wilk
1
ORCID: ORCID
Cezary Specht
2
Krzysztof Karwowski
1
Jacek Skibicki
1
Krzysztof Czaplewski
2
Slawomir Judek
1
Piotr Chrostowski
3
Jacek Szmagliński
3
Paweł Dąbrowski
2
ORCID: ORCID
Mariusz Specht
2
Sławomir Grulkowski
3
Roksana Licow
3

  1. Gdańsk University of Technology, Faculty of Electrical and Control Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
  2. Gdynia Maritime University, Faculty of Navigation, al. Jana Pawła II 3, 81-345 Gdynia, Poland
  3. Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The adjustment problem of the so-called combined (hybrid, integrated) network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length) on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients). While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional model of the GNSS observations.
Go to article

Authors and Affiliations

Roman Kadaj

This page uses 'cookies'. Learn more