Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Technical and operational energy efficiency measures for ships, such as the energy efficiency design index (EEDI) and ship energy efficiency management plan (SEEMP), aim to improve the energy efficiency of international shipping. Studies show that absolute emissions from international shipping will increase despite their mandatory application. For this reason, it is important to assess the impact on the effectiveness of the application of mandatory efficiency measures on future emissions. Further measures are being developed at the International Maritime Organization to control emissions from ships, in particular greenhouse gases (GHG) that contribute to climate change. In January 2019, a system of collecting fuel consumption data by ships (Ship Fuel Oil Consumption Database) was introduced.

Energy efficiency measures promoted by the IMO Maritime Environment Protection Committee, initially as facultative, then as mandatory, show strong preventive character. The mandatory use of energy efficiency measures by ships as well as the development of energy efficiency management policies by shipping companies contributes to climate protection and adaptation to climate change.

Go to article

Authors and Affiliations

Dorota Pyć
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article presents data on the anthropogenic air emissions of selected substances (CO2, SO2, total suspended particles (TSP), dioxins

and furans (PCDD/F), Pb and Cd) subject to reporting under the Climate Convention (UNFCCC) or the Convention on Long-range

Transboundary Air Pollution (UNECE CLRTAP). It also presents the national emissions of these substances in 2014 by the major source

categories and defines the share of metal production in these emissions. Analysis is based on national emission inventory reports. Most

important source of air emission in case of CO2 and SO2 is 1.A.1 Energy industries category. TSP and PCDD/F are emitted mainly from

fuel combustion in small sources (i.a. households). Emission of heavy metals (Pb and Cd) is connected mostly with 1.A.2. Manufacturing

industries and construction category. Metallurgy is significant source of emission only for lead and cadmium from among all considered

substances. The shares of particular sectors in the national emissions of given pollutants are important, in view of the possible reduction

measures and the determination in which industries they could bring about tangible results.

Go to article

Authors and Affiliations

I. Kargulewicz
Download PDF Download RIS Download Bibtex

Abstract

The paper is designed to present a method to estimate greenhouse gases (GHG) uptake or emissions in the absence of data for peat bog areas (GEST method). The paper presents the research results produced by a project on “Limiting CO2 emissions via the renaturalisation of peat bogs on the Eastern and Central European Plain”. The study area consisted of three peat bogs: Kluki, Ciemińskie Błota, and Wielkie Bagno (Słowiński National Park). The GEST method relies on the estimation of gas emissions on the basis of vegetation and water levels and greenhouse gas coefficients for each given habitat type provided in the research literature. The greenhouse gas balance was calculated for a baseline scenario assuming the lack of human impact and for a scenario taking into account human impact in the form of peat bog preservation. Initial research results indicate that there is a total of 41 GESTs in the studied bog areas and that a reduction in CO2 emissions of approximately 12% will occur following what is known as renaturalisation by raising the groundwater level, felling of trees across the bog, and making changes in habitats.
Go to article

Authors and Affiliations

Roman Cieśliński
1
ORCID: ORCID

  1. University of Gdańsk, Department of Hydrology, Bażyńskiego St, 4, 80-952 Gdańsk, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article aims to increase knowledge on methods for assessing Greenhouse Gases (GHG) emissions throughout the life cycle of marine alternative fuels. The life cycle of new marine alternative fuels and the assessment of GHG emissions resulting not only from their combustion is one of the new topics that are currently being discussed by the IMO, under the ‘Initial IMO GHG Reduction Strategy’ announced by the Organization in 2018. The IMO Marine Environment Protection Committee (IMO MEPC) is currently working on the development of Guidelines for Life-Cycle Assessment of GHG emissions for marine fuels from their extraction, through transport, processing, bunkering on board and end use in vessels propulsion systems, what is often called ‘from Cradle-to-Grave’. The use of fossil hydrocarbon fuels is common throughout the shipping industry, but in recent years ships with alternative energy sources have begun to be successfully introduced. Alternative fuels, although they may have low, zero or zero net GHG emissions in use (Tank to Wake or TtW), GHG emissions during their production, processing and distribution (Well-to-Tank or WtT) can vary widely. While a range of low-carbon and zero-carbon energy sources are potentially available for shipping, currently there is no clear decarbonization path or paths, and is likely that in the future a range of solutions will be adopted according to different vessel and operational requirements.
Go to article

Authors and Affiliations

Krzysztof Kołwzan
1

  1. Centre for IMO Affairs, Polish Register of Shipping

This page uses 'cookies'. Learn more