Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 80
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As a machining technology, welding can cause serious accidents by overloading or operation mistakes. Through analyzing the causes of various welding accidents, we found that the major cause for damage imposed after welding parts are loaded is the fracture of materials. Therefore, studying the influence of welding residual stress on the fracture property of materials is of great significance. This paper applied the digital image correlation technique to study the fracture property of welding parts under the influence of welding residual stress. In addition, standard parts and welding parts were selected to carry out a contrast experiment. Room temperature tensile tests were performed on both standard parts and test pieces after residual stress measurement. Using displacement field and strain field data obtained through VIC-2D software, the stress intensity factor around the crack tip of each specimen under the conditions of small load was calculated and corresponding analysis was carried out.

Go to article

Authors and Affiliations

J. Bian
Zx. Ge
Download PDF Download RIS Download Bibtex

Abstract

The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Long Li
Download PDF Download RIS Download Bibtex

Abstract

Lower Carboniferous limestone has been extracted in the “Czatkowice” open-pit hill-slope quarry in southern Poland since 1947, for the needs of metallurgical and building industries, as well as farming. We can distinguish two aquifers in the Czatkowice area: the Quaternary porous aquifer and the Carboniferous fissure-porous one. Two vertical zones representing different hydrodynamic characteristics can be indentified in the Carboniferous formations. One is a weathering zone and the other one the zone of fissures and interbedding planes. Groundwater inflows into the quarry workings have been observed at the lowest mining level (+315 m above the sea level (asl)) for over 30 years. This study concerns two hypotheses of the sources of such inflows originating either from (a) the aeration zone or from (b) the saturation zone. Inflows into the quarry combine into one stream flowing gravitationally to the doline under the pile in the western part of the quarry. This situation does not cause a dewatering need. Extending eastward mining and lowering of the exploitation level lead to increased inflows.
Go to article

Authors and Affiliations

Wei Li
Huan Zhao
Meiling Liu
Siqi Li
Wenfeng Sun
Lei Wang
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of the process of thermoelastic deformation and dissipative heating of elastomeric structural elements are assumed . The methods of prediction the longevity of structures based on the use of entropy fracture criteria are proposed. For solving of the link thermoelasticity problem of method of successive approximations is used.
Go to article

Authors and Affiliations

Kozub Yu.
G. Kozub
Download PDF Download RIS Download Bibtex

Abstract

Introduction: Osteoporosis affects over 200 million people worldwide causing nearly 9 mil-lion fractures annually, with more than half in America and Europe.
Objectives: This meta-analysis was conducted to investigate whether low milk intake is associated with an increased risk of fractures by summarizing all the available evidence.
Methods: Relevant studies were identified by searching the PubMed and EMBASE databases up to June 2020. The pooled relative risks with 95% confidence intervals were calculated.
Results: In a meta-regression analysis of 20 included studies (11 cohort and 9 case-control studies), a higher milk intake was not associated with a reduction in the total fracture risk in both sexes (OR 0.95, 95% CI: 0.84– 1.08), either in cohort (OR 0.91; 95% CI: 0.79–1.05) or case-control studies (OR 1.09; 95% CI: 0.82–1.44), as well as separately in men (OR 0.87; 95% CI: 0.71–1.07) and women (OR 0.95; 95% CI: 0.80–1.13).
Conclusion: Higher milk consumption is not associated with fracture risk reduction and should not be recommended for fracture prevention.
Go to article

Authors and Affiliations

Grzegorz Goncerz
1 2
Patrycja Kojm
3
Sylwia Skocelas
3
Krzysztof Więckowski
3
Tomasz Gallina
3
Paulina Pietrzyk
3
Sebastian Goncerz
3

  1. Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
  2. Polish Institute of Evidence Based Medicine, Kraków, Poland
  3. Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical investigation of the effects of lamination orientation on the fracture behaviour of rectangular steel wires for civil engineering applications using finite element (FE) analysis. The presence of mid-thickness across-the-width lamination changes the cup and cone fracture shape exhibited by the lamination-free wire to a V-shaped fracture with an opening at the bottom/pointed end of the V-shape at the mid-thickness across-the-width lamination location. The presence of mid-width across-the-thickness lamination changes the cup and cone fracture shape of the lamination-free wire without an opening to a cup and cone fracture shape with an opening at the lamination location. The FE fracture behaviour prediction approach adopted in this work provides an understanding of the effects of lamination orientation on the fracture behaviour of wires for civil engineering applications which cannot be understood through experimental investigations because it is impossible to machine laminations in different orientations into wire specimens.

Go to article

Authors and Affiliations

K.K. Adewole
S.J. Bull
Download PDF Download RIS Download Bibtex

Abstract

The Copper-SiC composite was investigated with the help of FEM. The authors modeled and analyzed the effect of relaxation of thermal stresses due to seasoning at room temperature after the manufacturing process together with the effect of thermal stresses induced by reheating the material to a service temperature. Especially, hypothetical fracture at interface was of interest. It was shown that, for a fixed temperature, a single crack emanating at 0° or 45° azimuth would develop only along a portion of fiber perimeter, and a further growth would require stress increase in the fiber surrounding.

Go to article

Authors and Affiliations

Piotr Czarnocki
Grzegorz Krzesiński
Piotr Marek
Tomasz Zagrajek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the influence of posttraumatic enophthalmos in orbital blow-out fracture on the treatment results. The relationship between time from injury to treatment, type of surgical reconstruction, bone graft site, type of diplopia and treatment results were evaluated. The relationship between the location of the fracture and the degree of enophthalmos was also analyzed. The study included 730 patients, 128 women and 602 men, aged 4 to 77 years, average 28 years, treated because of orbital blow-out fracture in our Department between 1975 and 2015. The study included only patients with an isolated orbital floor or medial wall fracture, so-called „pure blow-out” or „internal blowout”. Fractures of the lower rim, roof or lateral wall of the orbit, as well as the coexistence of other fractures of the facial part of the skull, were excluding citeria from the study. Complete recovery in surgically treated patients was achieved in 405 (58.8%) patients, improvement in 179 (26%) and no improvement in 105 (15.2%) patients. The degree of post-traumatic enophthalmos affects the result of the treatment. The location of the orbital fracture affects the enophthalmos, in our group of patients the largest incidence occurred in the fracture located in the orbital floor combined with medial wall. Patients who underwent surgical treatment up to 14 days after the injury achieved better results than those postponed.
Go to article

Authors and Affiliations

Piotr Koryczan
1
Jan Zapała
1
Michał Gontarz
1
Grażyna Wyszyńska-Pawelec
1

  1. Department of Cranio-Maxillofacial, Oncological and Reconstructive Surgery, Jagiellonian University Medical College. University Hospital in Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

About 1600 joint fractures were measured in tillites of the Upper Hecla Hoek Formation on the southern shore of Bellsund. Measurements were collected in 12 areas between the Renardbreen and Tjörndalen. Ray diagrams and contour diagrams of joint fractures, and contour diagrams of joint fractures after rotation to pre-folding position were made for each area. The preliminary analysis of diagrams indicates 2 conjugated joint sets: ca. 60°—120° and 0°—30°. This joint system is probably older than folding and was originated under ENE—WSW to NE—SW stress.

Go to article

Authors and Affiliations

Wojciech Ozimkowski
Download PDF Download RIS Download Bibtex

Abstract

Unconventional oil and gas reservoirs are characterised by low porosity, low permeability and low natural deliverability. At present, horizontal wells staged fracturing is an effective development method. However, in the case of staged hydraulic fracturing in horizontal wells, stress interference occurs between multiple fractures, leading to fracture deformation and even inhibiting the formation of fractures, thereby affecting reservoir production. In this paper, based on the extended finite element method (XFEM), considering the fluid flow in the fracture and fracturing fluid filtration, we analyse the effects of fracturing fluid pumping rate, fracture spacing and elastic modulus on horizontal in-situ stress, fracture parameters and fracture extension pattern during different fracturing initiation processes. The results show that the induced stress generated by the action of fracturing fluid changes the direction of horizontal in-situ stress in the elliptical region around the fracture. In the mode of simultaneous fracture initiation (TFIS), the extension of two symmetrical fractures is “repulsive”; in the mode of two fractures initiated at different times (TFIDT), the extension direction is “mutual attraction”. A large pumping rate and small elastic modulus are conducive to fracture propagation. In the TFIS mode, two fractures alternately expand, while in the TFIDT mode, the impact of rock mechanical properties and construction parameters on fracture propagation will be amplified. The extension of subsequent fractures will be restrained, especially when the fracture spacing is less than 10 m. The width of the previously created fracture will be severely affected, even causing a partial closure and becoming elongated fractures.
Go to article

Authors and Affiliations

Shuang Liang
1 2 3
ORCID: ORCID
Di Wang
1 2
ORCID: ORCID
Dan Liu
4
Yang Tian
3
ORCID: ORCID
Haibo Wang
1 2
ORCID: ORCID
Fengxia Li
1 2
ORCID: ORCID
Gang Dong
5
ORCID: ORCID
Chengfeng Yin
6
ORCID: ORCID
Yi Yang
7
ORCID: ORCID

  1. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing, China
  2. State Energy Center for Shale Oil Research and Development, Beijing, China
  3. Department of Petroleum Engineering, Northeast Petroleum University, Daqing, China
  4. PipeChina Oil & Gas Pipeline Control Center, Beijing, 122000, China
  5. The Eighth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
  6. The Fourth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
  7. The Tenth Oil Production Plant of Daqing Oilfield Limited Company, Daqing, China
Download PDF Download RIS Download Bibtex

Abstract

The old-new concrete interface is the weakest part in the composite structure, and there are a large number of microcracks on the interface. In order to study the mode II fracture performance of the bonding surface of old-new concrete, the effect of planting rebar and basalt fiber is investigated. Nine Z-shaped old-new concrete composite specimens with initial cracks are made. Nine shear fracture load-displacement curves are obtained, and the failure process and interface fracture are discussed. On this basis, the mode II fracture toughness and fracture energy are obtained. The regression equations for fracture toughness and fracture energy are deduced with analysis of variance (ANOVA). The results show that fracture toughness and fracture energy increase with the increase of planting rebar number and basalt fiber content. With the increase of the planting rebar number, mode II fracture toughness and fracture energy increase more significantly. Planting rebar is the major factor for mode II fracture performance.
Go to article

Authors and Affiliations

Shuang Liu
1 2
Zhenwu Shi
1
Tao Jiang
3
Huili Wang
3

  1. School of Civil Engineering, Northeast Forestry University, 150040 Harbin, China
  2. Senior engineer, Heilongjiang Transportation Investment Engineering Construction CO., LTD, Heilongjiang Transportation Investment Group Co, 150040 Harbin, China
  3. National & Local Joint Engineering Laboratory of Bridge and Tunnel Technology, Dalian University of Technology, 116023 Dalian, China
Download PDF Download RIS Download Bibtex

Abstract

In this work, the change of the structure and microhardness of Ti6Al4V titanium alloy after remelting and remelting with SiC alloing by electric arc welding (GTAW method) was studied. The current intensity equal 100 A and fixed scan speed rate equal 0,2 m/min has been used to remelting surface of the alloy. Change of structure were investigated by optical and scanning electron microscopy. Microhardness test showed, that the remelting of the surface does not change the hardness of the alloy. Treated by GTAW SiC alloying leads to the formation of hard (570 HV0, 1) surface layer with a thickness of 2 mm. The resulting surface layer is characterized by diverse morphology alloyed zone. The fracture of alloy after conventional heat treatment, similarly to fracture after remelting with GTAW is characterized by extremely fine dimples of plastic deformation. In the alloyed specimens the intergranular and crystalline fracture was identified.

Go to article

Authors and Affiliations

W. Bochnowski
Download PDF Download RIS Download Bibtex

Abstract

Tungsten heavy alloys comprising tungsten, nickel and ferrous were modified, where molybdenum was added in varying weight proportions keeping the ratio of Ni: Fe (8:2) constant. The powders were mixed in a high-energy ball mill and were further fabricated using the spark plasma sintering (SPS) method at a peak temperature of 1000°C with heating rate of 100°C/min. The details of the microstructure and mechanical properties of these various alloy compositions were studied. With the increasing weight composition of the Mo in the alloy, the relative density of the alloy increased with a significant improvement in all the mechanical properties. The yield strength (YS), ultimate tensile strength (UTS) and hardness improved significantly with increase in the proportion of Mo; however, a reduction in elongation percentage was observed. The maximum strength of 1250 MPa UTS was observed in the alloy with a Mo proportion of 24%. The heavy alloy unmixed with Mo has shown distinct white and grey regions, where white (W) grain is due to tungsten and grey region is a combinatorial effect of Ni and Fe. Upon addition of Mo, the white and gray phase differences started to minimize resulting in deep gray and black ‘C’-phase structures because of homogenization of the alloy. The main fracture mode found during this investigation in the alloys was inter-granular mode.

Go to article

Authors and Affiliations

B.S.L. Prasad
R. Annamalai
Download PDF Download RIS Download Bibtex

Abstract

The effects of the miniature channel-shaped scratches not detectable by the present inline electromagnetic defect detection system employed for wires’ surface defect detection on the fracture behaviour of the wires for civil engineering applications were investigated numerically. Finite element analysis revealed that both miniature channel-shaped across-the-thickness and across-the-width scratches change the fracture behaviour of the wires in terms of the fracture initiation locations and fracture process sequence. However, miniature across-the-thickness scratches does not affect the fracture shape of the wire while miniature across-the-width scratches changed the wires’ cup and cone fracture to a fracture shape with a predominantly flat fracture. These results provide an understanding of the fracture behaviour of wires with miniature scratches and serve as an alternative or a complimentary tools to experimental or fractographic failure analysis of wires with miniatures scratches which are difficult to carry out in the laboratory due to the sizes of the scratches.

Go to article

Authors and Affiliations

K.K. Adewole
S.J. Bull
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a numerical investigation of fracture criterion influence on perforation of high-strength 30PM steel plates subjected to 7.6251 mm Armour Piercing (AP) projectile. An evaluation of four ductile fracture models is performed to identify the most suitable fracture criterion. Included in the paper is the Modified Johnson-Cook (MJC) constitutive model coupled separately with one of these fracture criteria: the MJC fracture model, the Cockcroft-Latham (CL), the maximum shear stress and the constant failure strain models. A 3D explicit Lagrangian algorithm that includes both elements and particles, is used in this study to automatically convert distorted elements into meshless particles during the course of the computation. Numerical simulations are examined by comparing with the experimental results. The MJC fracture model formulated in the space of the stress triaxiality and the equivalent plastic strain to fracture were found capable of predicting the realistic fracture patterns and at the same time the correct projectile residual velocities. However, this study has shown that CL one parameter fracture criterion where only one simple material test is required for calibration is found to give good results as the MJC failure criterion. The maximum shear stress fracture criterion fails to capture the shear plugging failure and material fracture properties cannot be fully characterized with the constant fracture strain.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Djalel Eddine Tria
Radosław Trębiński

Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the properties and microstructure of Reactive Powder Concrete (RPC), which was developed at Cracow University of Technology. The influence of three different curing conditions: water (W), steam (S) and autoclave (A) and also steel fibres content on selected properties of RPC was analyzed. The composite characterized by w/s ratio equal to 0.20 and silica fume to cement ratio 20%, depending on curing conditions and fibres content, obtained compressive strength was in the range from 200 to 315 MPa, while modulus of elasticity determined during compression was about 50 GPa. During three-point bending test load-deflection curves were registered. Base on aforementioned measurements following parameters were calculated: flexural strength, stress at limit of proportionality (LOP), stress at modulus of rapture (MOR), work of fracture (WF), and toughness indices I₅, I₁₀ and I₂₀. Both amount of steel fibres and curing conditions influence the deflection of RPC during bending.

Go to article

Authors and Affiliations

T. Zdeb
J. Śliwiński
Download PDF Download RIS Download Bibtex

Abstract

The article presents research on modelling fracture in softwood bent elements. This kind of timber is the one most exploited for construction. Authors present a brief review on the subject with emphasis on three basic attempts: Linear Elastic Fracture Mechanics (LEFM), Continuum Damage Mechanics (CDM) and Hill’s Function (HF). Proposed 3D solution bases on Hill’s Function applied in the ABAQUS FEM code. The new idea includes isolating theoretical compression and tension zones in a model. Then, it is possible to distinguish between compressive and tensile strength and predict a real behaviour of bent elements. Introducing general dependencies between material properties leads to the need of determining only longitudinal elastic modulus (EL) and modulus of rupture (MOR). It is practical because these parameters are the main reported in a scientific and technical literature. Authors describe all of the assumptions in details. The experimental tests and Digital Image Correlation method (DIC) validate the FEM model.

Go to article

Authors and Affiliations

Bartosz Kawecki
ORCID: ORCID
Jerzy Podgórski
Download PDF Download RIS Download Bibtex

Abstract

Experimental evaluations on interlaminar and intralaminar fracture of multilayered and sandwich epoxy and polyester fabrics show an interesting behaviour at delamination initiation and crack propagation. Mode I and Mode Il tests were done on layered specimens with same type of ani ficial delamination to investigate the material influence on interlaminar fracture toughness and crack propagation. In sandwich specimens with a rigid foam core, the intralaminar damage failure and propagation are monitored.
Go to article

Authors and Affiliations

D.M. Constantinescu
N. Constantin
T. Goss
Download PDF Download RIS Download Bibtex

Abstract

One of important resistance parameters introduced into engineering calculations for selection of materials and evaluation of their operating properties is material crack resistance. Contrary to the stationary fracture toughness K1c, J," the dynamic fracture toughness K,d, J,d, ~ is also an important parameter. In this paper, the authors have evaluated the relation between the parameters of the dynamical fractures toughness and the structure as well as impact resistance in chosen frictionally welded joints. The above-mentioned joints are made of the following steel parts: N9E-45, 18G2A-St3S, St3S-45, 40H-45, 18G2A-40H. In this experiment, the instrumented bending impact test was used.
Go to article

Authors and Affiliations

Jan Sadowski
Tadeusz Szykowny
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a detailed analysis of fractured clasts hosted within Miocene and Pleistocene paraconglomerates that are exposed close to a map-scale overthrust. Both these paraconglomerates bear numerous fractured clasts (22-50%). The architecture of fractures (joints and minor faults) is well-organized and independent of both clast orientation and the degree of clast roundness. The fractures were formed in situ, most probably due to neotectonic activity of the map-scale overthrust. The number of fractured clasts is positively correlated with the clast size, and negatively correlated with the grain-size of clasts of detrital rocks. The number of fractured clasts increases in clasts of detrital rocks, compared to those of quartzites and magmatic rocks.
Go to article

Authors and Affiliations

Antoni K. Tokarski
Anna Świerczewska
Witold Zuchiewicz
Download PDF Download RIS Download Bibtex

Abstract

A simple empirical study on the orientation, diameter, and extent of radial fractures (long and short) at the vicinity of the face-perpendicular preconditioned boreholes is described. Homogenous and heterogeneous mining faces were considered when studying the orientation of radial fractures, four and five face-perpendicular preconditioning practices were used to investigate the outspread and diameter of radial fractures from one blasted drill hole to another. Long radial fractures were observed to be developed along the direction of the maximum principal stress and short radial fractures were observed to be developed along the direction of the intermediate principal stress in a homogenous mining face. On the other hand, long radial fractures were observed to be developed along the direction of the intermediate principal stress, while short radial fractures were observed to be developed along the direction of the maximum principal stress when the mining faces subjected to heterogeneous rock mass. The diameters of the radial fractures observed were inconsistent and were not nine times the diameter of the original borehole. Furthermore, the extent of radial fractures from one borehole to another was noted to be gradually improved when the additional of preconditioned borehole was in place. This study maintained that the orientation of radial fractures is mostly controlled by the rock properties, however, extend and the diameters of the radial fractures are controlled by rock properties, the effectiveness of the stress wave and gas pressure and brittleness of the rock mass.

Go to article

Authors and Affiliations

Fhatuwani Sengani
Download PDF Download RIS Download Bibtex

Abstract

The results of bearing capacity, deformability and fracture toughness of reinforced concrete beams with the external reinforcement in the form of steel cut and stretchy sheet, obtained due to the conducting of the experiment and mathematical simulation which were made of concrete of C40/50 class are given in the article. Mathematical simulation of beam structures is done on the basis of the deformation model which allows to conduct calculations of the unified methodological positions of different elements with diverse configuration of cross section and reinforcement as well as take into consideration elastic and plastic properties of concrete and reinforcement, assessing the actual stress-strain state of sections of reinforced concrete elements at different loading levels, including ultimate one. The deformation model is based on the actual diagrams use of concrete and reinforcement materials deformation and conditions of efforts balance in the normal section and hypothesis of flat sections. The theoretical value of bearing capacity and deformability, obtained as a result of the mathematical simulation was compared to the experimental data. The satisfactory coincidence of the mathematical calculation of bearing capacity, deformability, fracture toughness and experimental data gives an opportunity to use the algorithm not only for beam structures with bar reinforcement but also for beam structures with the external reinforcement in the form of steel cut and stretchy sheet.
Go to article

Authors and Affiliations

Sofiya Burchenya
Shmyh Roman
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research concerning AlCu4MgSi alloy ingots produced using horizontal continuous casting process under variable conditions of casting speed and cooling liquid flow through the crystallizer. The mechanical properties and structure of the obtained ingots were correlated with the process parameters. On the basis of the obtained results, it has been shown that depending on the cooling rate and the intensity of convection during solidification, significant differences in the mechanical properties and structure and of the ingots can occur. The research has shown that, as the casting speed and the flow rate of the cooling liquid increase, the hardness of the test samples decreases, while their elongation increases, which is related to the increase of the average grain size. Also, the morphology of the intermetallic phases precipitations lattice, as well as the centerline porosity and dendrite expansion, significantly affect the tensile strength and fracture mechanism of the tested ingots.

Go to article

Authors and Affiliations

P.M. Nuckowski
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of the Ti10V2Fe3Al alloy crack resistance assessment using the Rice’s J-integral technique as a function of morphology and volume fraction of α-phase precipitates. Titanium alloys characterized by the two-phase structure α + β are an interesting alternative to classic steels with high mechanical properties. Despite the high manufacturing costs and processing of titanium alloys, they are used in heavily loaded constructions in the aerospace industry due to its high strength to density ratio. The literature lacks detailed data on the influence of microstructure and, in particular, the morphology of α phase precipitates on fracture toughness in high strength titanium alloys. In the following work an attempt was made to determine the correlation between the microstructure and resistance to cracking in the Ti10V2Fe3Al alloy.

Go to article

Authors and Affiliations

R. Bogucki
M. Basiaga
A. Żyra

This page uses 'cookies'. Learn more