Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

On the basis of research, the mechanisms of dissolution and erosion during brazing of aluminium alloys and the influence of these phenomena on brazed joints of heat exchangers are presented. A number of factors have been identified that affect the formation of these phenomena during brazing aluminium alloys, these include : the maximum temperature and holding time at brazing temperature, and the type and amount of filler metal. The research was supported by examples of dissolution and erosion phenomena during series production of aluminium heat exchangers using three brazing profiles (normal, hot and very hot). It has been found that the dissolution of the engine radiator components during brazing, is from 18 to 68%, depending on the brazing profile used. For a very hot profile, erosion in part of the brazed exchanger, even destroys (removes) thin elements of the cooling fins.
Go to article

Bibliography

[1] E . Frąckowiak, W. Mroziński, Using flame brazing technology for producing aluminum automotive heat exchangers, Welding Technology Review 9, 57-62 (2007).
[2] Z. Mirski, K. Granat, A. Misiek, Brazing of aluminum heat exchangers in the automotive industry, Spajanie materiałów konstrukcyjnych 2, 32-34 (2015).
[3] D . Pritchard, Soldering, Brazing, Welding; Crowood Press. (2001).
[4] Z. Mirski, J. Pabian, Modern trends in production of brazed heat exchangers for automotive industry. Welding Technology Review 89 (8), 5-12 (2017).
[5] J. Pilarczyk (Ed.), Engineer’s Guide: Welding, 2, WNT, Warszawa (2014).
[6] K . Ferjutz, J.R. Davis. ASM Handbook 6, Welding, Brazing, and Soldering. 10th ed. ASM International; (1993).
[7] M. Motyka, L. Orman, M. Lech-Grega, M. Nowak, Advanced technics in analysis of quality problems in aluminium brazed heat exchangers, Rudy i Metale Nieżelazne 7 (2010).
[8] J. Nowacki, M. Chudziński, P. Zmitrowicz, Brazing in Mechanical Engineering, WNT, Warszawa (2007).
[9] K . Hyun-Ho, L. Soon-Bok, Effect of a brazing process on mechanical and fatigue behavior of alclad aluminum 3005, Journal of Mechanical Science and Technology 26 (7), 2111-2115 (2012).
[10] A . Sharma, S.H. Lee, H.O. Ban, Y.S. Shin, J.P. Jung, Effect of various factors on the brazed joint properties in Al brazing technology, Journal of Welding and Joining 34 (2), 30-35 (2016).
[11] P.K. Velu, Study of the Effect of Brazing On Mechanical Properties of Aluminum Alloys For Automotive Heat Exchangers; A Thesis Submitted to the Faculty of Purdue University. In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Purdue University Indianapolis, Indiana, USA (2017).
[12] M. Nylén, U. Gustavsson, W.B. Hutchinson, A. Örtnäs, Mechanistic Studies of Brazing in Clad Aluminium Alloys, Materials Science Forum 217-222, 1703-1708 (1996).
[13] M. Nylén, U. Gustavsson, W.B. Hutchinson, Å. Karlsson, The Mechanism of Braze Metal Penetration by Migration of Liquid Films of Aluminium Alloys, Materials Science Forum 331-337, 1737-1742 (2000).
[14] T. Yiyou, T. Zhen, J. Jianqing, Effect of Microstructure on Diffusional Solidification of 4343/3005/4343 Multi-Layer Aluminum Brazing Sheet. The Minerals, Metals & Materials Society and ASM International (2012).
[15] M. Nylén, U. Gustavsson, W.B. Hutchinson, Å. Karlsson, H. Johansson, Mechanisms of Erosion during Brazing of Aluminium Alloys, Materials Science Forum 396-402, 1585-1590 (2002).
[16] T. Izumi, T. Ueda, Influence of Erosion Phenomenon on Flow Behavior of Liquid Al-Si Filler Between Brazed Component; 13th International Conference on Aluminum Alloys (ICAA13) Pittsburgh (2012).
Go to article

Authors and Affiliations

Z. Mirski
1
ORCID: ORCID
J. Pabian
2
ORCID: ORCID
T. Wojdat
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Metal Forming, Welding and Metrology, 27 Wybrzeże Wypiańskiego, 50-370 Wrocław, Poland
  2. Research & Development, MAHLE Behr Ostrów Wielkopolski
Download PDF Download RIS Download Bibtex

Abstract

Welding of AISI H13 tool steel which is mainly used in mold making is difficult due to the some alloying elements and it high hardenability. The effect filler metal composition on the microstructural changes, phase evolutions, and hardness during gas tungsten arc welding of AISI H13 hot work tool steel was investigated. Corrosion resistance of each weld was studied. For this purpose, four filler metals i.e. ER 312, ER NiCrMo-3, ER 80S, and 18Ni maraging steel were supplied. Potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) were used to study the corrosion behavior of weldments. It was found the ER 80S weld showed the highest hardness owing to fully martensitic microstructure. The hardness in ER 312 and ER NiCrMo3 weld metals was noticeably lower than that of the other weld metals in which the microstructures mainly consisted of austenite phase. The results showed that the corrosion rate of ER 312 weld metal was lower than that other weld metals which is due to the high chromium content in this weld metal. The corrosion rate of ER NiCrMo-3 was lower than that of 18Ni maraging weld. The obtained results from EIS tests confirm the findings of potentiodynamic polarization tests.
Go to article

Bibliography

[1] B. Uddeholm, Bohler-Uddeholm H13 tool steel, 2013.
[2] J . Wang, Z. Xu, and X. Lu, J. Mater. Eng. Perform. 29 (3), 1849- 1859 (2020).
[3] G .A. Roberts, R. Kennedy, G. Krauss, Tool steels, 1998 ASM international.
[4] S. Jhavar, C.P. Paul, N.K. Jain, Eng. Fail. Anal. 34, 519-535 (2013).
[5] R .A. Meaquita, C.A. Barbosa, Proceedings of Machining, 2004 Sao Paulo.
[6] R .A. Mesquita, R. Schneider, Exacta. 8 (3), 307-318 (2010).
[7] W.T. Preciado, C.E.N. Bohorquez, Mater. Process. Technol. 179 (1-3), 244-250 (2006).
[8] A. Skumavc, J. Tušek, M. Mulc, D. Klobčar, Metalurgija. 53 (4), 517-520 (2014).
[9] J . Chen, S.-H. Wang, L. Xue, Mater. Sci. 47 (2), 779-792 (2012).
[10] A. Košnik, J. Tušek, L. Kosec, T. Muhič, Metalurgija. 50 (4), 231-234 (2011).
[11] S. Thompson, Handbook of mould: Tool and die repair welding, 1999 Elsevier.
[12] T. Branza, A. Duchosal, G. Fras, F. Deschaux-Beaume, P. Lours, Mater. Process.
[13] P. Peças, E. Henriques, B. Pereira, M. Lino, M. Silva, Build Futur. Innov. (2006).
[14] L.E.E. Jae-Ho, J. Jeong-Hwan, J.O.O. Byeong-Don, Y.I.M. Hong- Sup, M. Young-Hoon, Trans. Nonferrous Met. Soc. China. 19, 284-287 (2009).
[15] S.U.N. Yahong, S. Hanaki, H. Uchida, H. Sunada, N. Tsujii, Mater. Sci. Technol. 19, 91-93 (2009).
[16] R .H.G. e Silva, L.E. dos Santos Paes, C. Marques, K.C. Riffel, M.B. Schwedersky, J. Brazilian Soc. Mech. Sci. Eng. 41 (1), 38 (2019).
[17] K . Somlo, G. Sziebig, Ifac-papersonline. 52 (22), 101-107 (2019). [18] J .-L. Desir, Eng. Fail. Anal. 8 (5), 423-437 (2001).
[19] J .C. Lippold, Welding metallurgy and weldability, 2015 Wiley Online Library.
[20] J .R. Davis, Corrosion of weldments, 2006 ASM international.
[21] R .G. Buchheit Jr, J.P. Moran, G.E. Stoner, Corrosion. 46 (8), 610- 617 (1990).
[22] K .A. Chiang, Y.C. Chen, Mater. Lett. 59 (14-15), 1919-1923 (2005).
[23] C.F.G. Baxter, J. Irwin, R. Francis, The Third International Offshore and Polar Engineering Conference, 1993.
[24] M . Liljas, Glas. Scotland, Keynote Pap. V. 2, 13-16 (1994).
[25] J . Lippol, J.K. Damian, Welding metallurgy and weldability of stainless steels, 2005 John Wiley & Sons, New York.
[26] J .C. Lippold, S.D. Kiser, J.N. DuPont, Welding metallurgy and weldability of nickel-base alloys, 2011 John Wiley & Sons.
[27] R .M. Rasouli I, Metall. Eng. 21 (1), 54-71 (2018). [28] S. Kou, Welding metallurgy, 2003 John Wiley & Sons, New Jersey.
[29] M . Stern, A.L. Geary, Electrochem. Soc. 104 (1), 56-63 (1957).
[30] Y. Zhang, J. You, J. Lu, C. Cui, Y. Jiang, X. Ren, Surf. Coatings Technol. 204 (24), 3947-3953 (2010).
[31] E .E. Stansbury, R.A. Buchanan, Fundamentals of electrochemical corrosion, 2000 ASM international.
[32] M . Yeganeh, M. Saremi, Prog. Org. Coatings. 79, 25-30 (2015).
[33] P. Langford, J. Broomfield, Constr. Repair. 1 (2), (1987).
[34] A. Aguilar, A.A. Sagüés, R.G. Powers, Corrosion Rates of Steel in Concrete, 1990 ASTM International.
Go to article

Authors and Affiliations

Sadegh Varmaziar
1
ORCID: ORCID
Hossein Mostaan
1
ORCID: ORCID
Mahdi Rafiei
2
ORCID: ORCID
Mahdi Yeganeh
3
ORCID: ORCID

  1. Faculty of Engineering, Department of Materials and Metallurgical Engineering, Arak University, Arak 38156-8-8349, Iran
  2. Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
  3. Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Download PDF Download RIS Download Bibtex

Abstract

High temperature vacuum brazing is a well-known and commonly used method for joining of nickel based elements and subassemblies of gas turbines, both for stationary and aviation applications. Despite the fact that currently used brazing filler metals meet stringent requirements of aviation and energetic industries, a lot of effort is spent on improving operational properties of the joints through modification of chemical composition or brazing process parameters. This paper aims for both of these aspects – its purpose is evaluation of the impact of filler metal composition, brazing gap width and process conditions on the microstructure of joints between sheet metal elements made of Hastelloy X nickel superalloy. Two different Ni-based filler materials (BNi-2 and Amdry 915) were investigated, based on the results of light and scanning electron microscopy evaluations, energy dispersive X-ray spectroscopy and hardness measurements.
Go to article

Authors and Affiliations

K. Krystek
1 2
ORCID: ORCID
K. Krzanowska
1
ORCID: ORCID
M. Wierzbińska
1
ORCID: ORCID
M. Motyka
1
ORCID: ORCID

  1. Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  2. Pratt & Whitney Rzeszów S.A., 120 Hetmańska Str., 35-078 Rzeszów, Poland

This page uses 'cookies'. Learn more