Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This work presents the methodology for analyzing the impact of ground vibrations induced during the drilling of gas/oil exploration wells on the surrounding constructions, as well as on humans and the natural environment. In the primary stage, this methodology is based on measurements of ground vibrations induced by a specific type of drilling system in the so-called reference site. In the next stage, ground vibrations are estimated in similar conditions to another design site, these conditions are assumed for a given drilling system, treated as a vibration source. In both sites, special seismic and geotechnical data are collected to construct numerical models for dynamic analyses. Finally, if it is required, a protection system is proposed with respect to the drilling technology and local conditions. The methodology presented has been tested on the terrain of an active natural gas mine used as the design site, and located in the southeastern part of Poland. The reference site was placed in the terrain of a working drilling system in similar conditions in the central part of Poland. Based on the results of numerical simulations, one may verify the different locations of the drilling rig in the design site with respect to the existing industrial structure. Due to the hazard from destructive ground vibrations, a certain vibroisolation system was proposed at the design site. Based on the results of numerical simulations one could rearrange the components of the drilling system in order to provide maximum security for the surrounding structures.

Go to article

Authors and Affiliations

Andrzej Truty
Zenon Pilecki
Krzysztof Stypuła
Rafał Wiśniowski
Krzysztof Kozioł
Stanisław Stryczek
Download PDF Download RIS Download Bibtex

Abstract

The article presents precision and numerically stable method of calculation of the characteristic impedance of cylindrical multilayer waveguides used in high-precision wideband measuring instruments and standards, especially calculable thermal converters of AC voltage and precision wideband current shunts. Most of currently existing algorithms of characteristic impedance calculation of such waveguides are based upon approximations. Unfortunately, application of such methods is limited to waveguides composed of a specific, usually low number of layers. The accuracy of approximation methods as well as the number of layers is sometimes not sufficient, especially when the coaxial waveguide is a part of precision measurement equipment. The article presents the numerically stable matrix analytical formula using exponentially scaled modified Bessel functions to compute characteristic impedance and its components of the cylindrical coaxial multilayer waveguides. Results obtained with the developed method were compared with results of simulations made using the Finite Element Method (FEM) software simulations. Very good agreement between results of those two methods were achieved.
Go to article

Authors and Affiliations

Krzysztof Kubiczek
1
Marian Kampik
1

  1. Dept. of Measurement Science, Electronics and Control, Silesian University of Technology, Gliwice, Poland

This page uses 'cookies'. Learn more