Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Recent developments in automation and technology have revolutionized the way products are made. It is directly seen in the evolution of part miniaturization in the sectors such as aerospace, electronics, biomedicine and medical implants. Micromachining is a promising technology to fulfill the need of miniaturization. A review has been done on the micromachining processes such as micro electric discharge machining (micro-EDM) and wire EDM (WEDM), micro electrochemical machining (micro-ECM). Recent literature were studied and categorized in terms of materials, process parameters, performances, product manufactured, and miniature product generation. Starting with brief introduction to micromachining, classifications and applications, technical aspects of discussions from the literature have been presented on key factors such as parameters and the response variables. Important aspects of recast layer, heat effected zone, micro-hardness, micro cracks, residual stress, etc., have been given. A special focus is given to the status of the research on microgear manufacturing. Comparison has been made between other conventional process suitable for micro-gear manufacturing and WEDM. The miniature gear machined by WEDM shows the defect-free microstructure, better surface finish, thin recast layer and improved gear quality parameters such as profile and pitch. Finally, the research gaps and future research directions have been presented.

Go to article

Authors and Affiliations

Tina Chaudhary
Arshad Noor Siddiquee
Arindam Kumar Chanda
Zahid Akhtar Khan
Download PDF Download RIS Download Bibtex

Bibliography

[1] U. Riaz, I. Shabib, W. Haider, J. Biomed. Mater. Res. Part B. 107 (6), 1970-1996 (2019). DOI: https://doi.org/10.1002/jbm.b.34290
[2] M.K. Kulekci, Int. J. Adv. Manuf. Technol. 39 (9-10), 851-865 (2008). DOI: https://doi.org/10.1007/s00170-007-1279-2
[3] H . Furuya, N. Kogiso, S. Matunaga, K. Senda, Mater. Sci. Forum. 350, 341-348 (2000). DOI: https://doi.org/10.4028/www.scientific.net/MSF.350-351.341
[4] S.N. Mathaudhu, E.A. Nyberg, Magnesium Alloys in U.S. Military Applications: Past, Current and Future Solutions. In: S.N. Mathaudhu, A.A. Luo, N.R. Neelameggham, E.A. Nyberg, W.H. Sillekens (eds) Essential Readings in Magnesium Technology. Springer, Cham (2016). DOI: https://doi.org/10.1007/978-3-319-48099-2_10
[5] V.V. Ramalingam, P. Ramasamy, M. Das Kovukkal, G. Myilsamy, Met. Mater. Int. 26 (4), 409-430 (2020). DOI: https://doi.org/10.1007/s12540-019-00346-8
[6] K.H. Ho, S.T. Newman, Int. J. Mach. Tools Manuf. 43 (13), 1287- 1300 (2003). DOI: https://doi.org/10.1016/S0890-6955(03)00162-7
[7] M. Hourmand, A.A.D. Sarhan, M. Sayuti, Int. J. Adv. Manuf. Technol. 91 (1-4), 1023-1056, (2017). DOI: https://doi.org/10.1007/s00170-016-9671-4
[8] B. Nahak, A. Gupta, Manuf. Rev. 6 (2), 2019. DOI: https://doi.org/10.1051/mfreview/2018015
[9] S.S. Sidhu, A. Batish, S. Kumar, J. Reinf. Plast. Compos. 32 (17), 1310-1320 (2013). DOI: https://doi.org/10.1177/0731684413489366
[10] L . Arunkumar, B.K. Raghunath, Int. J. Eng. Technol. 5 (5), 4332- 4338 (2013).
[11] Sohil Parsana, Nishil Radadia, Mohak Sheth, Nisarg Sheth, Vimal Savsani, N. Eswara Prasad, T. Ramprabhu, Arch. Civ. Mech. Eng. 18 (3), 799-817 (2018). DOI: https://doi.org/10.1016/j.acme.2017.12.007
[12] S. Santosh, S. Javed Syed Ibrahim, P. Saravanamuthukumar, K. Rajkumar, K.L. Hari Krishna, Appl. Mech. Mater. 787, 406- 410 (2015). DOI: https://doi.org/10.4028/www.scientific.net/AMM.787.406
[13] M. Hourmand, A.A.D. Sarhan, S. Farahany, M. Sayuti, Int. J. Adv. Manuf. Technol. 101 (9-12), 2723-2737 (2019). DOI: https://doi.org/10.1007/s00170-018-3130-3
[14] R. Ranjith, P. Tamilselvam, T. Prakash, C. Chinnasamy, Mater. Manuf. Process. 34 (10), 1120-1128 (2019). DOI: https://doi.org/10.1080/10426914.2019.1628258
[15] S. Tripathy, D.K. Tripathy, Mach. Sci. Technol. 21 (3), 362-384 (2017). DOI: https://doi.org/10.1080/10910344.2017.1283957
[16] S. Suresh Kumar, M. Uthayakumar, S. Thirumalai Kumaran, P. Parameswaran, E. Mohandas, G. Kempulraj, B.S. Ramesh Babu, S.A. Natarajan, J. Manuf. Process. 20, 33-39 (2015). DOI: https://doi.org/10.1016/j.jmapro.2015.09.011
[17] P. Senthil, S. Vinodh, A.K. Singh, Int. J. Mach. Mach. Mater. 16 (1) 80-94 (2014). DOI: https://doi.org/10.1504/IJMMM.2014.063922
[18] K. Shunmugesh, K. Panneerselvam, Arch. Metall. Mater. 62 (3), 1803-1812 (2017). DOI: https://doi.org/10.1515/amm-2017-0273
[19] S.K. Ramuvel, S. Paramasivam, J. Mater. Res. Technol. 9 (3), 3885- 3896 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.02.015
[20] A.K. Sahu, S.S. Mahapatra, S. Chatterjee, J. Thomas, Mater. Today:. Proc. 5 (9), 19019-19026 (2018). DOI: https://doi.org/10.1016/j.matpr.2018.06.253
[21] M. Eswara Krishna, P.K. Patowari, Mater. Manuf. Processes. 29 (9), 1131-1138 (2014). DOI: https://doi.org/10.1080/10426914.2014.930887
[22] A.S. Gill, S. Kumar, Arabian J. Sci. Eng. 43 (3), 1499-1510 (2017). DOI: https://doi.org/10.1007/s13369-017-2960-x
[23] P.K Rout, B. Surekha, P.C. Jena, G.N. Arko, Mater. Today: Proc. 26 (2), 2379-2387 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.02.510
[24] M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric, J. Mech. Sci. Technol. 26 (1), 173-179 (2012). DOI: https://doi.org/10.1007/s12206-011-0922-x
[25] M. Ghoreishi, C. Tabari, Mater. Manuf. Processes, 22 (7-8), 833- 841 (2007). DOI: https://doi.org/10.1080/10426910701446812
[26] M. Kiyak, B.E. Aldemir, E. Altan, Int. J. Adv. Manuf. Technol. 79 (1-4), 513-518 (2015). DOI: https://doi.org/10.1007/s00170-015-6840-9
[27] B.M. Schumacher, J. Mater. Process. Technol. 149 (1-3), 376-381 (2004). DOI: https://doi.org/10.1016/j.jmatprotec.2003.11.060
[28] L . Srinivasan, K. Mohammad Chand, T. Deepan Bharathi Kannan, P. Sathiya, S. Biju, Trans. Indian Inst. Met. 71 (2), 373-382 (2018). DOI: https://doi.org/10.1007/s12666-017-1166-y
[29] S. Tripathy, D.K. Tripathy, Eng. Sci. Technol. Int. J. 19 (1), 62-70 (2016). DOI: https://doi.org/10.1016/j.jestch.2015.07.010
Go to article

Authors and Affiliations

A. Tajdeen
1
ORCID: ORCID
A. Megalingam
1
ORCID: ORCID

  1. Bannari Amman Institute of Technology, Department of Mechanical Engineering, Sathyamangalam, Erode-638401, Tamil Nadu, India
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effects of electrical discharge machining (EDM) on the chemical composition and microstructure of cast Alnico alloys, i.e., iron-based alloys composed of aluminum, nickel and cobalt. The experiments focused on determining the chemical composition of the surface layer before and after the EDM process. The microstructure of the material altered by the EDM was also examined. The study included measurement of the thickness of the white layer characteristic of EDM. It is evident that low values of the surface roughness parameters can be obtained by correctly selecting the EDM process parameters. The average surface roughness reported in the experiments was 1 μm. The surface roughness measurements were conducted with a Talysurf CCI lite non-contact profiler. The metrological results also indicate that lower surface roughness can be obtained at small discharge energies.
Go to article

Authors and Affiliations

D. Bańkowski
1
ORCID: ORCID
P. Młynarczyk
1
ORCID: ORCID
B. Szwed
1
ORCID: ORCID

  1. Kielce University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a study of the hybrid electro-discharge mechanical machining BEDMM (Brush Electro-Discharge Mechanical Machining) with the application of a rotary disk brush as a working electrode. The discussed method enables not only an effective machining with a material removal rate of up to 300 mm3/min but also finishing (with the obtained roughness of Ra < 0.5 μm) of the surfaces of complex-shaped alloys with poor machinability. The analysis of the factors involved in the machining process indicates that its efficiency is determined by electrodischarge. The use of flexible working electrodes makes it possible to apply simple technological instrumentation and results in the simplicity of the process automation. The aim of the study was to obtain quantitative relationships between the parameters of brush electro discharge mechanical machining (BEDMM) and its effects. The presented experimental research results define the effect of the process input parameters on the performance and roughness of machined surfaces obtained for manganese cast steel.

Go to article

Authors and Affiliations

P.S. Młynarczyk
S. Spadło
Download PDF Download RIS Download Bibtex

Abstract

In the work results of research on electrodischarge machining (EDM) of titanium alloy Ti10V2Fe3Al with (α + β) structure were presented. Preliminary heat treatment of samples allows to obtain different morphology and volume fraction of the α phase. The main goal of research was to assessment of the material microstructure impact on EDM technological factors (ie. material removal rate, tool wear) and morphology of technological surface layer. Electrodischarge machining is alternative and increasingly used method of titanium alloys machining. Research allowed to indicate the possibilities and limitations of use EDM in this area. It is especially important in the aspect of parts produced for aircraft industry and related requirements for the technological surface layer quality.

Go to article

Authors and Affiliations

A. Żyra
R. Bogucki
S. Skoczypiec
Download PDF Download RIS Download Bibtex

Abstract

The development of industry is determined by the use of modern materials in the production of parts and equipment. In recent years, there has been a significant increase in the use of nickel-based superalloys in the aerospace, energy and space industries. Due to their properties, these alloys belong to the group of materials hard-to-machine with conventional methods. One of the non-conventional manufacturing technologies that allow the machining of geometrically complex parts from nickel-based superalloys is electrical discharge machining. The article presents the results of experimental investigations of the impact of EDM parameters on the surfaces roughness and the material removal rate. Based on the results of empirical research, mathematical models of the EDM process were developed, which allow for the selection of the most favourable processing parameters for the expected values of the surface roughness Sa and the material removal rate.

Go to article

Bibliography

[1] C.P. Mohanty, S.S. Mahapatra, and M.R. Singh. An experimental investigation of machinability of Inconel 718 in electrical discharge machining. Procedia Materials Science, 6:605–611, 2014. doi: 10.1016/j.mspro.2014.07.075.
[2] S. Skoczypiec. Discussion of ultrashort voltage pulses electrochemical micromachining: a review. The International Journal of Advanced Manufacturing Technology, 87(1-4):177–187, 2016. doi: 10.1007/s00170-016-8392-z.
[3] A. Ruszaj, J. Gawlik, and S. Skoczypiec. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review, 7(2):34–41, 2016. doi: 10.1515/mper-2016-0015.
[4] B.K. Sahu, S. Datta, and S.S. Mahapatra. On electro-discharge machining of Inconel 718 super alloys: an experimental investigation. Materials Today: Proceedings, 5(2):4861–4869, 2018. doi: 10.1016/j.matpr.2017.12.062.
[5] L. Li, Z.Y. Li, X.T. Wei, and X. Cheng. Machining characteristics of Inconel 718 by sinking-DM and wire-EDM. Materials and Manufacturing Processes, 30(8):968–973, 2015 doi: 10.1080/10426914.2014.973579.
[6] R. Świercz and D. Oniszczuk-Świercz. Influence of electrical discharge pulse energy on the surface integrity of tool steel 1.2713. Proceedings of the 26th International Conference on Metallurgy and Materials, pages 1450–1455, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900234.
[7] M. Kunieda, B. Lauwers, K.P. Rajurkar, and B.M. Schumacher. Advancing EDM through fundamental insight into the process. CIRP Annals – Manufacturing Technology, 54(2):64–87, 2005. doi: 10.1016/S0007-8506(07)60020-1.
[8] B. Izquierdo, J.A. Sánchez, S. Plaza, I. Pombo, and N. Ortega. A numerical model of the EDM process considering the effect of multiple discharges. International Journal of Machine Tools and Manufacture, 49(3-4):220–229, 2009. doi: 10.1016/j.ijmachtools.2008.11.003.
[9] B. Izquierdo, S. Plaza, J.A. Sánchez, I. Pombo, and N. Ortega. Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Applied Surface Science, 259:780–790, 2012. doi: 10.1016/j.apsusc.2012.07.124.
[10] G. Puthumana. An influence of parameters of micro-electrical discharge machining on wear of tool electrode. Archive of Mechanical Engineering, 64(2):149–163, 2017. doi: 10.1515/meceng- 2017-0009.
[11] A. Żyra, R. Bogucki, and S. Skoczypiec. Austenitic steel surface integrity after EDM in different dielectric liquids. Technical Transactions, 12:231–242, 2017. doi: 10.4467/2353737XCT.17.222.7765.
[12] J. Holmberg, A. Wretland, J. Berglund, and T. Beno. Surface integrity after post processing of EDM processed Inconel 718 shaft. The International Journal of Advanced Manufacturing Technology, 95(5-8):2325–2337, 2018. doi: 10.1007/s00170-017-1342-6.
[13] Z. Chen, J. Moverare, R.L. Peng, and S. Johansson. Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP, 45:307–310, 2016. doi: 10.1016/j.procir.2016.02.053.
[14] C. Upadhyay, S. Datta, M. Masanta, and S.S. Mahapatra. An experimental investigation emphasizing surface characteristics of electro-discharge-machined Inconel 601. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8):3051–3066, 2017. doi: 10.1007/s40430-016-0643-2.
[15] D. Oniszczuk-Świercz and R. Świercz. Surface texture after wire electrical discharge machining. Proceedings of the 26th International Conference on Metallurgy and Materials, pages 1400– 1406, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900226.
[16] L. Straka, I. Corný, J. Pitel’, and S. Hašová. Statistical approach to optimize the process parameters of HAZ of tool steel EN X32CrMoV12-28 after die-sinking EDM with SF-Cu electrode. Metals, 7(2):35, 2017. doi: 10.3390/met7020035.
[17] P. Vishnu, N. Santhosh Kumar, and M. Manohar. Performance prediction of electric discharge machining of Inconel-718 using artificial neural network. Materials Today: Proceedings, 5(2):3770–3780, 2018. doi: 10.1016/j.matpr.2017.11.630.
[18] V. Aggarwal, S.S. Khangura, and R.K. Garg. Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. The International Journal of Advanced Manufacturing Technology, 79(1-4):31–47, 2015. doi: 10.1007/s00170-015-6797-8.
[19] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and genetic algorithm. Archive of Mechanical Engineering, 63(1):45–71, 2016. doi: 10.1515/meceng-2016-0003.
[20] Rahul, K. Abhishek, S. Datta, B.B. Biswal, and S.S. Mahapatra. Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9):3499–3527, 2017. doi: 10.1007/s40430-016-0659-7.
[21] M. Tanjilul, A. Ahmed, A.S. Kumar, and M. Rahman. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. Journal of Materials Processing Technology, 255:263–274, 2018. doi: 10.1016/j.jmatprotec.2017.12.016.
[22] A. Ahmed, A. Fardin, M. Tanjilul, Y.S. Wong, M. Rahman, and A.S. Kumar. A comparative study on the modelling of EDM and hybrid electrical discharge and arc machining considering latent heat and temperature-dependent properties of Inconel 718. The International Journal of Advanced Manufacturing Technology, 94(5-8):2729–2737, 2018. doi: 10.1007/s00170-017-1100-9.
[23] S. Kumar, A.K. Dhingra, and S. Kumar. Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface ethodology. Mechanics of Advanced Materials and Modern Processes, 3:7, 2017. doi: 10.1186/s40759-017-0022-4.
[24] G.S. Prihandana, T. Sriani, M. Mahardika, M. Hamdi, N. Miki, Y.S. Wong, and K. Mitsui. Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. The International Journal of Advanced Manufacturing Technology, 75(1-4):599–613, 2014. doi: 10.1007/s00170-014-6145-4.
[25] G. Talla, S. Gangopadhyay, and C.K. Biswas. Effect of powder-suspended dielectric on theEDM characteristics of Inconel 625. Journal of Materials Engineering and Performance, 25(2):704– 717, 2016. doi: 10.1007/s11665-015-1835-0.
[26] A. Torres, I. Puertas, and C.J. Luis. EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes. The International Journal of Advanced Manufacturing Technology, 84(9-12):2671–2688, 2016. doi: 0.1007/s00170-015-7880-x.
[27] S. Spadło, P. Młynarczyk, and K. Łakomiec. Influence of the of electrical discharge alloying methods on the surface quality of carbon steel. The International Journal of Advanced Manufacturing Technology, 89(5-8):1529–1534, 2017. doi: 10.1007/s00170-016-9168-1.
[28] S. Spadło, J. Kozak, and P. Młynarczyk. Mathematical modelling of the electrical discharge mechanical alloying process. Procedia CIRP, 6:422–426, 2013. doi: 10.1016/j.procir.2013.03.031.
[29] I. Pliszka, N. Radek, and A. Gądek-Moszczak. Properties of WC-Cu electro spark coatings subjected to laser modification. Tribologia, 5:73–79, 2017.
[30] T. Chmielewski, D. Golański, and W. Włosiński. Metallization of ceramic materials based on the kinetic energy of detonation waves. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(2):449–456, 2015. doi: 10.1515/bpasts-2015-0051.
[31] J. Holmberg, A. Wretland, and J. Berglund. Grit blasting for removal of recast layer from EDM process on Inconel 718 shaft: an evaluation of surface integrity. Journal of Materials Engineering and Performance, 25(12):5540–5550, 2016. doi: 10.1007/s11665-016-2406-8.
[32] A. Ruszaj, S. Skoczypiec, and D. Wyszyński. Recent developments in abrasive hybrid manufacturing processes. Management and Production Engineering Review, 8(2):81–90, 2017. doi: 10.1515/mper-2017-0020.
[33] T. Sałaciński, M. Winiarski, T. Chmielewski, and R. Świercz. Surface finishing using ceramic fiber brush tools. Proceedings of the 26th International Conference on Metallurgy and Material, pages 1220–1226, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900195.
[34] R. Świercz and D. Oniszczuk-Świercz. Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining. Metals, 7(12):550, 2017. doi: 10.3390/met7120550.
[35] Douglas C. Montgomery. Design and Analysis of Experiments. 9th edition. Wiley. 2017.
[36] I. Ayesta, B. Izquierdo, J.A. Sánchez, J.M. Ramos, S. Plaza, I. Pombo, N. Ortega, H. Bravo, R. Fradejas, and I. Zamakona. Influence of EDM Parameters on slot machining in C1023 aeronautical alloy. Procedia CIRP, 6:129–134, 2013. doi: 10.1016/j.procir.2013.03.059.
Go to article

Authors and Affiliations

Rafał Świercz
1
Dorota Oniszczuk-Świercz
1
Lucjan Dąbrowski
1

  1. Warsaw University of Technology, Institute of Manufacturing Technology, Warsaw, Poland.
Download PDF Download RIS Download Bibtex

Abstract

To achieve better precision of features generated using the micro-electrical discharge machining (micro-EDM), there is a necessity to minimize the wear of the tool electrode, because a change in the dimensions of the electrode is reflected directly or indirectly on the feature. This paper presents a novel modeling and analysis approach of the tool wear in micro-EDM using a systematic statistical method exemplifying the influences of capacitance, feed rate and voltage on the tool wear ratio. The association between tool wear ratio and the input factors is comprehended by using main effect plots, interaction effects and regression analysis. A maximum variation of four-fold in the tool wear ratio have been observed which indicated that the tool wear ratio varies significantly over the trials. As the capacitance increases from 1 to 10 nF, the increase in tool wear ratio is by 33%. An increase in voltage as well as capacitance would lead to an increase in the number of charged particles, the number of collisions among them, which further enhances the transfer of the proportion of heat energy to the tool surface. Furthermore, to model the tool wear phenomenon, a egression relationship between tool wear ratio and the process inputs has been developed.

Go to article

Bibliography

[1] L. Tang and Y.F. Guo. Electrical discharge precision machining parameters optimization investigation on S-03 special stainless steel. The International Journal of Advanced Manufacturing Technology, 70(5-8):1369–1376, 2014. doi: 10.1007/s00170-013-5380-4.
[2] V.K. Meena and M.S. Azad. Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Materials and Manufacturing Processes, 27(9):973–977, 2012. doi: 10.1080/10426914.2011.610080.
[3] S.P. Sivapirakasam, J. Mathew, and M. Surianarayanan. Multi-attribute decision making for green electrical discharge machining. Expert Systems with Applications, 38(7):8370–8374, 2011. doi: 10.1016/j.eswa.2011.01.026.
[4] T. Muthuramalingam and B. Mohan. Influence of discharge current pulse on machinability in electrical discharge machining. Materials and Manufacturing Processes, 28(4):375–380, 2013. doi: 10.1080/10426914.2012.746700.
[5] Y.H. Guu, C.Y. Chou, and S.-T. Chiou. Study of the effect of machining parameters on the machining characteristics in electrical discharge machining of Fe-Mn-Al alloy. Materials and Manufacturing Processes, 20(6):905–916, 2005. doi: 10.1081/AMP-200060412.
[6] B. Jabbaripour, M.H. Sadeghi, Sh. Faridvand, and M.R. Shabgard. Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Ti–6Al–4V. Machining Science and Technology, 16(3):419–444, 2012.
[7] R. Mukherjee and S. Chakraborty. Selection of EDM process parameters using biogeography based optimization algorithm. Materials and Manufacturing Processes, 27(9):954–962, 2012. doi: 10.1080/10426914.2011.610089.
[8] S.S. Agrawal and V. Yadava. Modeling and prediction of material removal rate and surface roughness in surface-electrical discharge diamond grinding process of metal matrix composites. Materials and Manufacturing Processes, 28(4):381–389, 2013. doi: 10.1080/10426914.2013.763678.
[9] M.Ch. Panda and V. Yadava. Intelligent modeling and multiobjective optimization of die sinking electrochemical spark machining process. Materials and Manufacturing Processes, 27(1):10–25, 2012. doi: 10.1080/10426914.2010.544812.
[10] V.V. Reddy, A. Kumar, P.M. Valli, and C.S. Reddy. Influence of surfactant and graphite powder concentration on electrical discharge machining of PH17-4 stainless steel. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 37(2):641–655, 2015. doi: 10.1007/s40430-014-0193-4.
[11] B. Jabbaripour, M.H. Sadeghi, M.R. Shabgard, and H. Faraji. Investigating surface roughness, material removal rate and corrosion resistance in PMEDM of -TiAl intermetallic. Journal of Manufacturing Processes, 15(1):56–68, 2013. doi: 10.1016/j.jmapro.2012.09.016.
[12] A. Bhattacharya, A. Batish, and N. Kumar. Surface characterization and material migration during surface modification of die steels with silicon, graphite and tungsten powder in EDM process. Journal of Mechanical Science and Technology, 27(1):133–140, 2013. doi: 10.1007/s12206-012-0883-8.
[13] M.P. Jahan,Y.S.Wong, and M. Rahman. Acomparative experimental investigation of deep-hole micro-EDM drilling capability for cemented carbide (WC-Co) against austenitic stainless steel (SUS 304). The International Journal of Advanced Manufacturing Technology, 46(9-12):1145–1160, 2010. doi: 10.1007/s00170-009-2167-8.
[14] H.S. Lim, Y.S. Wong, M. Rahman, and M.K.E. Lee. A study on the machining of high aspect ratio micro-structures using micro-EDM. Journal of Materials Processing Technology, 140(1):318–325, 2003. doi: 10.1016/S0924-0136(03)00760-X.
[15] M.P. Jahan, Y.S. Wong, and M. Rahman. A comparative study of transistor and RC pulse generators for micro-EDM of tungsten carbide. International Journal of Precision Engineering and Manufacturing, 9(4):3–10, 2008.
[16] H.S. Liu, B.H. Yan, F.Y. Huang, and K.H. Qiu. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. Journal of Materials Processing Technology, 169(3):418–426, 2005. doi: 10.1016/j.jmatprotec.2005.04.084.
[17] F. Han, S. Wachi, and M. Kunieda. Improvement of machining characteristics of micro-EDM using transistor type isopulse generator and servo feed control. Precision Engineering, 28(4):378–385, 2004. doi: 10.1016/j.precisioneng.2003.11.005.
[18] F.L. Amorim and W.L. Weingaertner. The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. Journal of Materials Processing Technology, 166(3):411–416, 2005. doi: 10.1016/j.jmatprotec.2004.08.026.
[19] Y.S. Wong, M. Rahman, H.S. Lim, H. Han, and N. Ravi. Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. Journal of Materials Processing Technology, 140(1):303–307, 2003. doi: 10.1016/S0924-0136(03)00771-4.
[20] N. Natarajan and P. Suresh. Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. T he International Journal of Advanced Manufacturing Technology, 77(9-12):1741–1750, 2015. doi: 10.1007/s00170-014-6494-z.
[21] D.J. Kim, S.M. Yi, Y.S. Lee, and C.N. Chu. Straight hole micro EDM with a cylindrical tool using a variable capacitance method accompanied by ultrasonic vibration. Journal of Micromechanics and Microengineering, 16(5):1092, 2006. http://stacks.iop.org/0960-1317/16/i=5/a=031.
[22] Y. Li, M. Guo, Z. Zhou, and M. Hu. Micro electro discharge machine with an inchworm type of micro feed mechanism. Precision Engineering, 26(1):7–14, 2002. doi: 10.1016/S0141-6359(01)00088-5.
[23] J. Ramkumar, N. Glumac, S.G. Kapoor, and R.E. DeVor. Characterization of plasma in micro-EDM discharge using optical spectroscopy. Journal of Manufacturing Processes, 11(2):82–87, 2009. doi: 10.1016/j.jmapro.2009.10.002.
[24] K.P. Maity and R.K. Singh. An optimisation of micro-EDM operation for fabrication of microhole. The International Journal of Advanced Manufacturing Technology, pages 1–9, 2012. doi: 10.1007/s00170-012-4098-z.
[25] M.S. Azad and A.B. Puri. Simultaneous optimisation of multiple performance characteristics in micro-EDM drilling of titanium alloy. The International Journal of Advanced Manufacturing Technology, 61(9-12):1231–1239, 2012. doi: 10.1007/s00170-012-4099-y.
[26] B.B. Pradhan, M. Masanta, B.R. Sarkar, and B. Bhattacharyya. Investigation of electro-discharge micro-machining of titanium super alloy. The International Journal of Advanced Manufacturing Technology, 41(11-12):1094, 2009. doi: 10.1007/s00170-008-1561-y.
[27] H.S. Liu, B.H. Yan, F.Y. Huang, and K.H. Qiu. A study on the characterization of high nickel alloy micro-holes using micro-EDM and their applications. J ournal of Materials Processing Technology, 169(3):418–426, 2005. doi: 10.1016/j.jmatprotec.2005.04.084.
[28] F.L. Amorim and W.L. Weingaertner. The influence of generator actuation mode and process parameters on the performance of finish EDM of a tool steel. Journal of Materials Processing Technology, 166(3):411–416, 2005. doi: 10.1016/j.jmatprotec.2004.08.026.
[29] U. Natarajan, X.H. Suganthi, and P.R. Periyanan. Modeling and multiresponse optimization of quality characteristics for the micro-EDM drilling process. Transactions of the Indian Institute of Metals, 69(9):1675–1686, 2016. doi: 10.1007/s12666-016-0828-5.
[30] M.A.Ahsan Habib and M. Rahman. Performance analysis ofEDMelectrode fabricated by localized electrochemical deposition for micro-machining of stainless steel. The International Journal of Advanced Manufacturing Technology, 49(9-12):975–986, 2010. doi: 10.1007/s00170-009-2479-8.
[31] F.T. Weng, R.F. Shyu, and C.S. Hsu. Fabrication of micro-electrodes by multi-EDM grinding process. Journal of Materials Processing Technology, 140(1):332–334, 2003. doi: 10.1016/S0924-0136(03)00748-9.
[32] K. Takahata, N. Shibaike, and H. Guckel. High-aspect-ratio WC-Co microstructure produced by the combination of LIGA and micro-EDM. Microsystem Technologies, 6(5):175–178, 2000. doi: 10.1007/s005420000052.
[33] T.Y. Tai, T. Masusawa, and H.T. Lee. Drilling microholes in hot tool steel by using microelectro discharge machining. Materials Transactions, 48(2):205–210, 2007. doi: 10.2320/matertrans.48.205.
[34] D.D. DiBitonto, P.T. Eubank, M.R. Patel, and M.A. Barrufet. Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model. Journal of Applied Physics, 66(9):4095–4103, 1989. doi: 10.1063/1.343994.
[35] P. Govindan and S.S. Joshi. Experimental characterization of material removal in dry electrical discharge drilling. International Journal of Machine Tools and Manufacture, 50(5):431–443, 2010. doi: 10.1016/j.ijmachtools.2010.02.004.
[36] S. Joshi, P. Govindan, A. Malshe, and K. Rajurkar. Experimental characterization of dry EDM performed in a pulsating magnetic field. CIRP Annals-Manufacturing Technology, 60(1):239–242, 2011. doi: 10.1016/j.cirp.2011.03.114.
[37] P. Govindan, A. Gupta, S.S. Joshi, A. Malshe, and K.P. Rajurkar. Single-spark analysis of removal phenomenon in magnetic field assisted dry EDM. J ournal of Materials Processing Technology, 213(7):1048–1058, 2013. doi: 10.1016/j.jmatprotec.2013.01.016.
[38] D.C. Montgomery. Design and Analysis of Experiments. JohnWiley & Sons, New York, 2008.
Go to article

Authors and Affiliations

Govindan Puthumana
1

  1. Technical University of Denmark, Lyngby, Denmark
Download PDF Download RIS Download Bibtex

Abstract

In this investigation, the surface characteristics of Nickel based superalloy Inconel-625 were evaluated by the electrical discharge machining with used cooking oil-based biodiesel as a dielectric. Nickel-based superalloys find wide applicability in numerous industries due to their specific properties. The Cu electrodes of various densities prepared by atomic diffusion additive manufacturing process were used for machining. A comparison of the performance was made based on average surface roughness. The Design-expert software was used for experimental design and parametric analysis. The outcome demonstrated that bio-dielectric fluid produced improved surface characteristics. The surface roughness was observed to reduce. The surface micrograph obtained from scanning electron microscopy also confirms a better surface finish of bio-dielectric fluid over EDM oil. The surface roughness was shown to be most significantly influenced by the discharge current, with the other parameters having little or no effect. The results showed that for bio-dielectric, the lowest Ra was 0.643 µm, and for EDM oil, the highest value of 0.844 µm. The slightest difference in roughness value for two dielectric fluids was 0.013 µm, and the highest difference was 0.115 µm.
Go to article

Authors and Affiliations

Mohd Yunus Khan
1
ORCID: ORCID
P. Sudhakar Rao
1
ORCID: ORCID
BS. Pabla
1
ORCID: ORCID

  1. National Institute of Technical Teachers Training and Research (NITTTR), Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

In this research work, Ti6Al4V alloy material was subjected to electric discharge machining (EDM) and its fatigue life was investigated at low cycle fatigue mode. In order to evaluate the influence of recast layer generated during the machining process on the fatigue life, samples prepared using end milling process were also subjected to similar tests and a comparative analysis is presented. Data were observed in the fully reversed fatigue mode at room temperature using samples fabricated as per ASTM standard E606. The specimen were machined on a spark electric discharge die sink machine which were subjected to fatigue, and the recorded fatigue lives were compared with the fatigue life of end milled specimen. The machined surfaces were examined through optical and scanning electron microscopes, and the roughness was measured with a standard profilometer. It was observed that when the discharge current is augmented, the recast layer formed was in the range of 20 to 70 µm thick. From the results, it is being concluded that fatigue life of the samples fabricated by EDM is less for various load conditions when compared with that of the end milled sample. The milled sample at 160 MPa load exhibited 2.71×105 cycles, which is 64% more when compared to EDM sample.

Go to article

Authors and Affiliations

A. Eakambaram
M. Anthony Xavior
Download PDF Download RIS Download Bibtex

Abstract

Multiple response optimization of the machining of 17-4 PH stainless steel material, which is difficult to process with traditional methods, with EDM was made by Taguchi-based grey relational analysis method. Surface roughness (Ra), material removal rate (MRR), and electrode wear rate (EWR) were the responses, while current, pulse-on time, pulse-off time, and voltage were chosen as process parameters. According to the multi-response optimization, the experiment level that gave the best result was A1B2C2D2. Optimum machining outputs were found as A1B3C1D1 using the Taguchi method. As a result of the Taguchi analysis and ANOVA, it was determined that the significant parameters according to multiple performance characteristics were current (56.22%) and voltage (22.40%). The surfaces of the best GRG and optimal sample were examined with XRD, SEM and EDX analysis and the effects on the surfaces were compared.
Go to article

Authors and Affiliations

E. Gerçekcioğlu
1
ORCID: ORCID
M. Albaşkara
2
ORCID: ORCID

  1. Erciyes University, Mechanical Engineering Department, Kayseri, Turkey
  2. Afyon Kocatepe University, İscehisar Vocational School, Afyonkarahisar, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The use of quantitative methods, including stochastic and exploratory techniques in environmental studies does not seem to be sufficient in practical aspects. There is no comprehensive analytical system dedicated to this issue, as well as research regarding this subject. The aim of this study is to present the Eco Data Miner system, its idea, construction and implementation possibility to the existing environmental information systems. The methodological emphasis was placed on the one-dimensional data quality assessment issue in terms of using the proposed QAAH1 method - using harmonic model and robust estimators beside the classical tests of outlier values with their iterative expansions. The results received demonstrate both the complementarity of proposed classical methods solution as well as the fact that they allow for extending the range of applications significantly. The practical usefulness is also highly significant due to the high effectiveness and numerical efficiency as well as simplicity of using this new tool.

Go to article

Authors and Affiliations

Piotr Czechowski
Artur Badyda
Grzegorz Majewski

This page uses 'cookies'. Learn more