Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Non-destructive testing (NDT) is generally used to estimate the compressive strength of concrete material without compromising its structural integrity. However, the available testing methods on the market have particular limitations that may restrict the accuracy of the results. Therefore, this study aimed to develop a new technique for measuring the compressive strength of geopolymer concrete using infrared imaging analysis and Thermal Diameter Variation (TDV) rate. The compressive strength range was designed within the target strength of 20, 30 and 40 MPa. The infrared image was captured on the preheated concrete surface using FLIR-ONE infrared camera. Based on the correlation between TDV rate and compressive strength, higher accuracy was obtained in the orange contour with an R2 of 0.925 than in the red contour with an R2 of 0.8867. It is apparent that infrared imaging analysis has excellent reliability to be used as an alternative NDT by focusing on the warmer region during the procedure.
Go to article

Authors and Affiliations

Andri Kusbiantoro
ORCID: ORCID
A.H. Ismail
1
ORCID: ORCID
S.K. Jema’in
1
ORCID: ORCID
K. Muthusamy
2
ORCID: ORCID
F.F. Zainal
3
ORCID: ORCID

  1. Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  2. Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, Pahang, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the statical research tests of rod bolt made of plastic with a length of 5.5 m, which were performed in a modern laboratory test facility at the Department of Underground Mining of the University of Science and Technology. Innovative The Self-excited Acoustic System (SAS) used to measure stress changes in the bolt support was characterized. The system can be used for the non-destructive evaluation of the strain of the bolt around the excavations as well as in tunnels. The aim of the study was to compare the re-sults recorded by two different measuring systems, thanks to which it will be possible to assess the load of long bolt support by means of the non-destructive method. The speed and simplicity of measurement, access to the sensors, accuracy of measurement and reading should be kept in mind in determining the load of rock bolt support . In addition, the possibility of damage to the sensor as a re-sult of technological or natural hazards should also be taken into account. In economic conditions, the „technical - balance laws of production”, which ex-cludes the use of load sensors on each bolt must be preserved. The use of indi-vidual load sensors of rock bolt support for the boundary state, allows appro-priate protection actions of the mining crew against sudden loss of excavation stability to be taken. The paper presents two basic effects used in the ultrasonic measurement sys-tem. The first result was the existence of stable limit cycle oscillations for posi-tive feedback. This effect is called the self-excited effect. The second effect is called the elasto-acoustic effect. It means that with the change of elastic stress-es in the material bring the change of the speed of propagation of the wave. In this connection, the propagation time between measuring heads is also changed. This effect manifests itself in the change in the oscillation frequency of the self-excited system. For this reason, by measuring the frequency of self-excited oscillation, it is possible to indirectly determine the level of effort of the tested material.

Go to article

Authors and Affiliations

Krzysztof Skrzypkowski
Waldemar Korzeniowski
Krzysztof Zagórski
Krzysztof Lalik
Ireneusz Dominik
Janusz Kwaśniewski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a 3D model and simulations of corroding reinforcement bars in a concrete element. Electric potential distributions are calculated in the concrete matrix and on its surface for two rebars arrangements with one or three active (anodic) sites to assess the reliability and identify possible problems when standard test measurements for corrosion assessment in concrete structures are used and conclusion on the corrosion state is inferred. The values of the potential strongly depend on a concrete layer thickness and beyond the threshold of 5-7 cm it is hardly possible to detect the number of active sites on the rebar. Also conductivity – which is not constant in real world constructions – is an important factor. Thus without estimation of the state of concrete it is difficult to draw reliable conclusions on the corroding activity from shear potential measurements on the surface.

Go to article

Authors and Affiliations

R. Filipek
K. Szyszkiewicz-Warzecha
J. Szczudło
Download PDF Download RIS Download Bibtex

Abstract

The study aimed touse3D computed tomography (CT) to analyse a joint between two dissimilar materials produced by friction stir welding (FSW). As the materials joined, i.e., aluminum and copper, differ in properties (e.g., density and melting point), the weld is predicted to have an inhomogeneous microstructure. The investigations involved applying microfocus computed tomography (micro-CT) to visualize and analyze the volumetric structure of the joint. Volume rendering is extremely useful because, unlike computer modelling, which requires many simplifications, it helps create highly accurate representations of objects. Image segmentation into regions was performed through global gray-scale thresholding. The analysis also included elemental mapping of the weld cross-sections using scanning electron microscopy (SEM) and examination of its surface morphology by means of optical microscopy (OP). The joint finds its use in developing elements used in the chemical, energetics and aerospace industries, due to the excellent possibilities of combining many different properties, and above all, reducing the weight of the structure.
Go to article

Bibliography

[1] Zhao, Y., You, J., Qin, J., Dong, C., Liu, L., Liu, Z. & Miao, S. (2022). Stationary shoulder friction stir welding of Al–Cu dissimilar materials and its mechanism for improving the microstructures and mechanical properties of joint. Materials Science & Engineering A 837, 142754. https://doi.org/10.1016/j.msea.2022.142754.
[2] Zhou, L., Li, G.H., Zhang, R.X., Zhou, W.L., He, W.X., Huang, Y.X. & Song, X.G. (2019). Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint. Journal of Alloys and Compounds. 775(15), 372-382. https://doi.org/10.1016/ j.jallcom.2018.10.045.
[3] Tong, L., Xie, J.N., Liu, L., Chang, G. & Ojo, O.O. (2020). Microscopic appraisal and mechanical behavior of hybrid Cu/Al joints fabricated via friction stir spot welding-brazing and modified friction stir clinching-brazing. Journal of Materials Research and Technology. 9(6),13239-13249. https://doi.org/10.1016/j.jmrt.2020.09.042.
[4] Tian, W.H., Su, H. & Wu, C.S. (2020). Effect of ultrasonic vibration on thermal and material flow behavior, microstructure and mechanical properties of friction stir welded al/cu joints. International Journal of Advanced Manufacturing Technology. 107(1), 59-71. https://doi.org/10.1007/s00170-020-05019-0.
[5] Pilarczyk, J. (2005). Engineer's Handbook 2, Welding. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[6] Rajak, D.K., Pagar, D.D., Menezes, P.L. & Eyvazian, A. (2020). Friction-based welding processes: friction welding and friction stir welding. Journal of Adhesion Science and Technology. 34(24), 2613-2637. https://doi.org/10.1080/ 01694243.2020.1780716.
[7] Schneider, J., Chen, P. & Nunes, A.C. (2019). Entrapped oxide formation in the friction stir weld (FSW) process. Metallurgical and Materials Transactions A, 50, 257-270 https://doi.org/10.1007/s11661-018-4974-8.
[8] Rams, B., Pietras, A., & Mroczka K. (2014). Friction stir welding of elements made of cast aluminium alloys. Archives of Foundry Engineering. 59(1), 385-392.
[9] Martinsen, K., Hu, S.J. & Carlson, B.E. (2015). Joining of dissimilar materials. CIRP Annals. 64(2), 679-699. https://doi.org/10.1016/j.cirp.2015.05.006.
[10] Weman, K. (2011). Welding processes handbook. New York: Elsevier.
[11] Singh, R., Kumar, R., Feo, L., et al. (2016). Friction welding of dissimilar plastic/polymer materials with metal powder reinforcement for engineering applications. Composites Part B: Engineering. 101, 77-86. https://doi.org/10.1016/ j.compositesb.2016.06.082.
[12] Rajak, D.K., Pagar, D.D., Menezes, P.L., et al. (2019). Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers. 11(10), 1667. https://doi.org/10.3390/polym11101667.
[13] Lee, H.S., Lee, Y.R., Min, K.J. (2016). Effects of friction stir welding speed on AA2195 alloy. In: MATEC Web of Conferences. Vol. 45, France: EDP Sciences.
[14] Ramnath, B.V., Subramanian, S.A., Rakesh, R. et al. (2018). A review on friction stir welding of aluminium metal matrix composites. In IOP Conference Series: Materials Science and Engineering. 8-9 March 2018. IOP Publishing; 012103.
[15] Bankowski, D., Spadlo, S. (2017). Vibratory tumbling of elements made of Hardox400 steel. In 26th International Conference on Metallurgy and Materials (pp. 725-730).
[16] Karrar, G., Galloway, A., Toumpis, A., Li, H.J. & Al-Badouc, F. (2020). Microstructural characterisation and mechanical properties of dissimilar aa5083-copper joints produced by friction stir welding. Journal of Materials Research and Technology. 9(5), 11968-11979. https://doi.org/10.1016/j.jmrt.2020.08.073.
[17] Galvao, I., Loureiro, A. & Rodrigues, D.M. (2016). Critical review on friction stir welding of aluminium to copper. Science and Technology of Welding and Joining. 21(7), 523-546. https://doi.org/10.1080/13621718.2015.1118813.
[18] Ouyang, J., Yarrapareddy, E. & Kovacevic, R. (2006). Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. Journal of Materials Processing Technology. 172(1), 110-122. https://doi.org/10.1016/j.jmatprotec.2005.09.013.
[19] Mehta, K.P. & Badheka, V.J. (2016). A review on dissimilar friction stir welding of copper to aluminum: process, properties, and variants. Materials and Manufacturing Processes. 31(3), 233-254. https://doi.org/10.1080/10426914.2015.1025971.
[20] Cao, F.J., Li, J.P., Hou, W.T., Shen, Y.F., Ni, R. (2021). Microstructural evolution and mechanical properties of the friction stir welded Al Cu dissimilar joint enhanced by post-weld heat treatment. Materials Characterization. 174, 110998. https://doi.org/10.1016/j.matchar.2021.110998.
[21] Hou, W.T., Shen, Z.K., Huda, N., Oheil, M., Shen, Y.F., Jahed, H. & Gerlich, A.P. (2021). Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Materials Science and Engineering: A. 809, 140992. https://doi.org/10.1016/j.msea.2021.140992.
[22] Mao, Y., Ni, Y., Qin, X.D.P. & Li, F. (2020). Microstructural characterization and mechanical properties of micro friction stir welded dissimilar al/cu ultra-thin sheets. Journal of Manufacturing Processes. 60, 356-365. https://doi.org/10.1016/j.jmapro.2020.10.064.
[23] Patel, N.P., Parlikar, P., Dhari, R.S., Mehta, K. & Pandya, M. (2019). Numerical modelling on cooling assisted friction stir welding of dissimilar Al-Cu joint. Journal of Manufacturing Processes. 47, 98-109. https://doi.org/10.1016/j.jmapro.2019.09.020.
[24] Mehta, K.P. & Badheka, V.J. (2017). Hybrid approaches of assisted heating and cooling for friction stir welding of copper to aluminum joints. Journal of Materials Processing Technology. 239, 336-345. https://doi.org/10.1016/ j.jmatprotec.2016.08.037.
[25] You, J.Q., Zhao, Y.Q., Dong, C.L., Wang, C.G., Miao, S., Yi, Y.Y. & Hai, Y.H. (2020). Microstructure characteristics and mechanical properties of stationary shoulder friction stir welded 2219-t6 aluminium alloy at high rotation speeds. The International Journal of Advanced Manufacturing Technology. 108, 987-996. https://doi.org/10.1007/s00170-019-04594-1.
[26] Li, D.X., Yang, X.Q., Cui, L., He, F.Z. & Zhang, X. (2015). Investigation of stationary shoulder friction stir welding of aluminum alloy 7075-t651. Journal of Materials Processing Technology. 222, 391-398. https://doi.org/10.1016/ j.jmatprotec.2015.03.036.
[27] Depczynski, W., Spadlo, S., Mlynarczyk, P., Ziach, E., Hepner P. (2015). The selected properties of porous layers formed by pulse microwelding technique. In METAL 2015: 24TH International Conference on Metallurgy and Materials, 3 - 5 June 2015 (pp.1087-1092). Brno, Czech Republic.
[28] Bańkowski D. & Młynarczyk P. (2020). Visual testing of castings defects after vibratory machining. Archives of Foundry Engineering. 20(4), 72-76. DOI: 10.24425/afe.2020.133350.
[29] Mlynarczyk, P., Spadlo, S. (2016). The analysis of the effects formation iron - tungsten carbide layer on aluminum alloy by electrical discharge alloying process. In METAL 2016: 25th Anniversary International Conference on Metallurgy and Materials, 25 – 27 May 2016 (pp.1109-1114). Brno, Czech Republic.
[30] Depczynski, W. Jasionowski, R., Mlynarczyk, P. (2018). The impact of process variables on the connection parameters during pulse micro-welding of the H800 superalloy. In METAL 2018: 27TH International Conference on Metallurgy and Materials, 23 – 25 May 2018 (pp. 1506-1512). Brno, Czech Republic.
[31] Bankowski, D. & Spadlo, S. (2019). The use of abrasive waterjet cutting to remove flash from castings. Archives of Foundry Engineering. 19(3), 94-98. DOI: 10.24425/afe.2019.129617.
[32] Spadlo, S., Depczynski, W. & Mlynarczyk, P. (2017). Selected properties of high velocity oxy liquid fuel (HVOLF) - sprayed nanocrystalline WC-Co Infralloy(TM) S7412 coatings modified by high energy electric pulse. Metalurgija. 56(3-4), 412-414.
[33] Bonarski, J.T., Kania, B., Bolanowski, K. & Karolczuk, A. (2015). Utility of stress-texture characteristics of structural materials by X-ray. Archives of Metallurgy and Materials. 60(3), 2247-2252. DOI: 10.1515/amm-2015-0370.
[34] Jezierski, G. (1993). Industrial radiography. Warszawa: Wydawnictwa Naukowo-Techniczne. (in Polish).
[35] Cierniak, R. (2005). Computed tomography. Construction of CT devices. Reconstruction algorithms. Warszawa: Akademicka Oficyna Wydawnicza EXIT. (in Polish).
[36] Kielczyk, J. (2006). Industrial radiography. Wydawnictwo Gamma. (in Polish).
[37] Ratajczak, E. (2012). X-ray computed tomography (CT) for industrial tasks. Pomiary Automatyka Robotyka. 5, 104-113. (in Polish).
[38] Cullity, B.D. (1959). Elements of X-Ray diffraction. London: Addison-Wesley Publising Company. Inc.
[39] Axon, H.J., Hume-Rothery, W. (1948). Proc. R. Soc. (London), Ser. A 193, 1.
[40] Pearson, W.B. (1958).: ÑA Handbook of Lattice Spacings and Structures of Metals and Alloysì. Oxford: Pergamon Press.  
Go to article

Authors and Affiliations

Wojciech P. Depczyński
1
ORCID: ORCID
Damian Bańkowski
1
ORCID: ORCID
Piotr S. Młynarczyk
1
ORCID: ORCID

  1. Radiography and Computed Tomography Laboratory, Department of Metal Science and Manufacturing Processes, Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Large concrete structures such as buildings, bridges, and tunnels are aging. In Japan and many other countries, those built during economic reconstruction after World War II are about 60 to 70 years old, and flacking and other problems are becoming more noticeable. Periodic inspections were made mandatory by government and ministerial ordinance during the 2013-2014 fiscal year, and inspections based on the new standards have just begun. There are various methods to check the soundness of concrete, but the hammering test is widely used because it does not require special equipment. However, long experience is required to master the hammering test. Therefore, mechanization is desired. Although the difference between the sound of a defective part and a normal part is very small, we have shown that neural network is useful in our research. To use this technology in the actual field, it is necessary to meet the forms of concrete structures in various conditions. For example, flacking in concrete exists at various depths, and it is impossible to learn about flacking in all cases. This paper presents the results of a study of the possibility of finding flacking at different depths with a single inspection learning model and an idea to increase the accuracy of a learning model when we use a rolling hammer.
Go to article

Authors and Affiliations

Atsushi Ito
1
ORCID: ORCID
Masafumi Koike
2
Katsuhiko Hibino
3

  1. Faculty of Economics, Chuo University, Tokyo, Japan
  2. Department of Engineering, Utsunomiya University,Tochigi, Japan
  3. Port Denshi Corporation, Tokyo, Japan
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the present study is enhanced of the sand moulding process through addressing the sand mould defects and failures, ultimately lead to improve production of the sand castings with well-defined of pattern profiles. The research aimed to reduce the cost and energy expenditure associated with the compaction time of the sand moulding process. Practical destructive tests were conducted to assess properties of the green sand moulds. Linear regression and multi-regression methods were employed to identify the key factors influencing the sand moulding process. The proposed experimental destructive tests and predicted regression methods facilitated measurement of the green sand properties and enabled evaluation of the effective moulding parameters, thereby enhancing the sand moulding process. Factorial design of experiments approach was employed to evaluate effect of parameters of water content and mixing time of the green sand compaction process on the mechanical properties of green sand mould namely the tensile strength, and compressive strength.
Go to article

Bibliography

[1] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. DOI: https://doi.org/10.1007/s11665-019-04089-w.
[2] Shahria, S., Tariquzzaman, M., Rahman, H., Al Amin, M., & Rahman, A. (2017). Optimization of molding sand composition for casting Al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI:10.11648/j.ijmea.20170503.13.
[3] Patil, G. & Inamdar, K. (2014). Optimization of casting process parameters using taguchi method. International Journal of Engineering Development and Research. 2(2), 2506-2511.
[4] Kassie, A. & Assfaw, S. (2013). Minimization of casting defects. IOSR Journal of Engineering. 3(5), 31-38. DOI:10.9790/3021-03513138.
[5] Gadag, S. Sunni Rao, K. Srinivasan, M. et al. (1987). Effect of organic additives on the properties of green sand assessed from design of experiments. AFS Transactions. 42, 179-186.
[6] Karunaksr, D. & Datta, G. (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Caly Science. 37(1-2), 58-66. DOI:10.1016/j.clay.2006.11.005.
[7] Said, R. Kamal, M. Miswan, N. & Ng, S. (2018). Optimization of moulding composition for quality improvement of sand casting. Journal of Advanced Manufacturing Technology. 12(1(1), 301-310.
[8] Pulivarti, S. & Birru, A. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15, 152-159. DOI: 10.1007/s41230-018-7188-1.
[9] Abdulamer, D. (2023). Impact of the different moulding parameters on engineering properties of the green sand mould. Archives of Foundry. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.
[10] Kumar, S. Satsangi, P. & Prajapati, D. (2011). Optimization of green sand casting process parameters of a foundry by using taguchi’s method. International Journal of Advanced Manufacturing Technology. 55(1-4), 23-34. DOI: 10.1007/s00170-010-3029-0.
[11] Murguía, P. Ángel, R. Villa González del Pino, E. Villa, Y. & Hernández del Sol, J. (2016). Quality improvement of a casting process using design of experiments. Prospectiva. 14(1), 47-53. DOI: 10.15665/rp.v14i1.648.
[12] Abdullah, A. Sulaiman, S. Baharudin, B. Arifin, M. & Vijayaram, T. (2012). Testing for green compression strength and permeability properties on the tailing sand samples gathered from ex tin mines in perak state, Malaysia. Advanced Materials Research. 445, 859-864. DOI: 10.4028/www.scientific.net/AMR.445.859.
[13] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering, 112(2), 70-76. DOI: 10.5604/01.3001.0015.6289.
[14] Bast, J., Simon, W. & Abdullah, E. (2010). Investigation of cogs defects reason in green sand moulds. Archives of Metallurgy and Materials. 55(3), 749-755. DOI: 10.24425/afe.2023.144288.
[15] Montgomery, D.C. (2001). Design and Analysis of Experiments. (5th ed.). John Wiley & Sons, Inc.
[16] Dhindaw, B.K., Chakraborty, M. (1974). Study and control of properties and behavior of different sand systems by application of statistical design of experiments In the 41st International Foundry Congress, (pp. 9-14). Belgique.
[17] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73, DOI: 10.24425/afe.2023.146664, 2023.
[18] Parappagoudar, M. Pratihar, D. & Datta, G. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13. DOI: 10.1179/136404607X184952.
[19] Dietert, H. W. Brewster, F. S. & Graham, A. L. (1996). AFS Trans. 74, 101-111.
[20] Parappagoudar, M. Pratihar, D. & Datta G. (2005). Green sand mould system modelling through design of experiments. Indian Foundry Journal. 51(4), 40-51.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology- Iraq
Download PDF Download RIS Download Bibtex

Abstract

In the framework of non-destructive evaluation (NDE), an accurate and precise characterization of defects is fundamental. This paper proposes a novel method for characterization of partial detachment of thermal barrier coatings from metallic surfaces, using the long pulsed thermography (LPT). There exist many applications, in which the LPT technique provides clear and intelligible thermograms. The introduced method comprises a series of post-processing operations of the thermal images. The purpose is to improve the linear fit of the cooling stage of the surface under investigation in the logarithmic scale. To this end, additional fit parameters are introduced. Such parameters, defined as damage classifiers, are represented as image maps, allowing for a straightforward localization of the defects. The defect size information provided by each classifier is, then, obtained by means of an automatic segmentation of the images. The main advantages of the proposed technique are the automaticity (due to the image segmentation procedures) and relatively limited uncertainties in the estimation of the defect size.

Go to article

Authors and Affiliations

Giuseppe Dinardo
Laura Fabbiano
Rosanna Tamborrino
Gaetano Vacca
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic Non-Destructive Testing (NDT) is a powerful tool used for testing, verification, and inspection of material, especially for quality control and assurance. The key applications are the identification of flaws, cracks, irregularities, defects, and estimation of material thickness. The standard documents available for ultrasonic NDT are used as a guideline for the specifications and certification of the calibration reference standard block (RSB). The method for metrological characterization of the testing blocks is not specifically addressed in standard documents and is left to the wisdom of metrologists working in the ultrasonic calibration laboratories to adopt the suitable one. The ultrasonic flaw detector (UFD) is used most widely in ultrasonic NDT. The International Institute of Welding (IIW) V1 RSB standard is used as a reference to ascertain the functionalities of UFDs. In this article, we have proposed a new methodology for calibration of RSB and evaluation of associated measurement uncertainty along with influencing parameters. The proposed method conforms to the international standard ISO 2400:2012 and Indian standard IS 4904:2006 for validation purposes. According to these standards, the clauses for RSB e.g., dimension and quality of material have been examined. The expanded measurement uncertainty in thickness, ultrasonic longitudinal velocity, ultrasonic attenuation, parallelism and perpendicularity is ±0.068 mm, ±6.70 m/s, ±0.22 dB, and ±0.066 mm, respectively. The measurement uncertainty of these parameters is well within as per clauses stipulated in the standard documents except the ultrasonic longitudinal velocity for the IS standards.
Go to article

Authors and Affiliations

Kalpana Yadav
1 2
Sanjay Yadav
1 2
P.K. Dubey
1 2

  1. Pressure, Vacuum and Ultrasonic Metrology, Division of Physico-Mechanical Metrology, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
  2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
Download PDF Download RIS Download Bibtex

Abstract

Pot-cored coils are commonly used as probes in eddy current testing. In this paper, an analytical model of such a coil placed over a three-layer plate with a hole has been presented. The proposed solution enables the modelling of both magnetic and non-magnetic conductive plates that contain different types of hole, i.e. a through, a surface, an inner or a subsurface hole. The problem was solved by using the truncated region eigenfunction expansion (TREE) method. The analysis was carried out in a cylindrical coordinate system in which the solution domain was radially limited. With the employment of the filamentary coil, the expressions for the magnetic vector potential, and subsequently for the impedance of the cylindrical coil were obtained. The final formulas were presented in a closed form and then implemented in Matlab. The resistance and reactance values were compared with the results obtained in the experiment and using the finite element method in the Comsol Multiphysics package. In each of the cases, good agreement was obtained.

Go to article

Authors and Affiliations

G. Tytko
Download PDF Download RIS Download Bibtex

Abstract

Construction and demolition (C&D) waste management should be accordance with the waste management hierarchy. In practice, C&D waste are often downcycling. It is the result of many factors, including lack of awareness about the value inherent in waste. The paper presents analysis of the adaptability of non-destructive testing (NDT) methods for technical assessment of waste properties. As part of the work, non-destructive testing methods were described and classified in accordance with material and the features they enable testing. The publication presents examples of the use of NDT in the recovery of building materials during construction projects, in the field of influence of technical information of waste on the way it is managed. Finally, a scheme of waste management process during the renovation of an object with the application of NDT methods was presented.

Go to article

Authors and Affiliations

J. Jaskowska-Lemańska
J. Sagan
Download PDF Download RIS Download Bibtex

Abstract

This study investigates image processing techniques for detecting surface cracks in spring steel components, with a focus on applications like Magnetic Particle Inspection (MPI) in industries such as railways and automotive. The research details a comprehensive methodology that covers data collection, software tools, and image processing methods. Various techniques, including Canny edge detection, Hough Transform, Gabor Filters, and Convolutional Neural Networks (CNNs), are evaluated for their effectiveness in crack detection. The study identifies the most successful methods, providing valuable insights into their performance. The paper also introduces a novel batch processing approach for efficient and automated crack detection across multiple images. The trade-offs between detection accuracy and processing speed are analyzed for the Morphological Top-hat filter and Canny edge filter methods. The Top-hat method, with thresholding after filtering, excelled in crack detection, with no false positives in tested images. The Canny edge filter, while efficient with adjusted parameters, needs further optimization for reducing false positives. In conclusion, the Top-hat method offers an efficient approach for crack detection during MPI. This research offers a foundation for developing advanced automated crack detection system, not only to spring sector but also extends to various industrial processes such as casting and forging tools and products, thereby widening the scope of applicability.
Go to article

Bibliography

[1] Gubeljak, N., Predan, J., Senčič, B. & Chapetti, M. (2014). Effect of residual stresses and inclusion size on fatigue resistance of parabolic steel springs. Materials Testing. 56(4), 312-317. DOI:10.3139/120.110567.
[2] Xu, C., Yilong L., Ming Y., Jiabang Y. & Xiang P. (2021). Effects of the ultra-sonic assisted surface rolling process on the fatigue crack initiation position distribution and fatigue life of 51CrV4 spring steel. Materials. 14(10), 2565, 1-19. DOI:10.3390/ma14102565.
[3] Yun, J.P., Choi, Dc., Jeon, Yj. et al., (2014). Defect inspection system for steel wire rods produced by hot rolling process. The International Journal of Advanced Manufacturing Technology. 70, 1625-1634. DOI:10.1007/s00170-013-5397-8.
[4] Perichiyappan, S. & Jagadeesha, T. (2021). Modelling and simulation of primary suspension springs used in Indian railways. Materials Today: Proceedings. 46(17), 8450-8454. DOI: 10.1016/j.matpr.2021.03.478.
[5] Kumar, S., Kumar, V., Nandi, R.K. et al. (2008). Investigation into surface defects arising in hot-rolled SUP 11A grade spring billets. Journal of Failure Analysis and Prevention. 8(6), 492-497. DOI:10.1007/s11668-008-9169-y.
[6] Filipović, M., Eriksson, C. & Överstam, H. (2006). Behaviour of surface defects in wire rod rolling. Steel research international. 77(6), 439-444, DOI:10.1002/srin.200606411.
[7] Matjeke, V.J., Van Der Merwe, J.W., Mukwevho, G. & Phasha, M.J. (2019). Thermal characteristics of spring steels used in railway bogies. SN Applied Sciences. 1, 1548, 1-8. DOI:10.1007/s42452-019-1546-5.
[8] Nagumo, Y., Tanifuji, K. & Imai, J. (2010). A basic study on wheel flange climbing using model wheelset. International Journal of Railway. 3(2), 60-67. DOI:10.1299/kikaic.74.242.
[9] The Rail Safety Inspection Office. (2021). Accident and incident investigation report: Derailment of the regional passenger train No. 21209 between Chvalkov and Vcelnicka operating control points. Retrieved November 7, 2023, from https://www.dicr.cz/files/uploads/Zpravy/MU/DI_Chvalkov_Vcelnicka_210715.pdf.
[10] Maass, M., Deutsch, W.A., Bartholomai, F. (2014). Magnetic Particle Inspection on train components. In 11th European Conference on Non-Destructive Testing, 6-11 October 2014 (pp. 1-9). Prague, Czech Republic.
[11] Deng, J., Singh, A., Zhou, Y., Lu, Y. & Lee, V.C.S. (2022). Review on computer vision-based crack detection and quantification methodologies for civil structures. Construction and Building Materials. 356, 129238. DOI:10.1016/j.conbuildmat.2022.129238.
[12] Mohan, A. & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. Alexandria Engineering Journal. 57(2), 787-798. DOI:10.1016/j.aej.2017.01.020.

Go to article

Authors and Affiliations

Marcin M. Marciniak
1

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the common defects of flexible road pavement is the loss of bonding between two layers of asphalt concrete: the base course and the binder course. The occurrence of this phenomenon has a major impact on the observed state of deflection and deformation of the pavement. This effect affects the results of non-destructive tests which are used to calculate material parameters and then are used in the diagnostics of the pavement condition or design of structural strengthening. This paper discusses the influence of the various level of bonding on the result of backcalculation and the obtained elastic moduli. For the obtained values of moduli, calculations of key deformations and pavement durability were performed. Improper assumptions about the interaction between the layers affects the observed results. Additionally paper discusses the effect of pavement displacement discontinuity on the observed deflection basin and compares the results with those for a model with continuity. Numerical calculations were carried out using Simulia Abaqus software, the computational model was verified using analytical solution.
Go to article

Authors and Affiliations

Paweł Tutka
1
ORCID: ORCID
Roman Nagórski
1
ORCID: ORCID
Magdalena Złotowska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of non-destructive testing and analyses carried out for a brick masonry building from the 19th century, which has many irregularities that involve a lack of inspections and tests of its technical condition for many years, as well as a failure to carry out necessary repairs. The conducted organoleptic tests enabled the most significant building damage to be indicated, and its causes were determined on the basis of the results of non-destructive tests and analyses. These causes include mainly wall cracks, ceiling deflections and excessive dampness. It also contains the relationships, which were developed using non-destructive dielectric and resistive methods when testing the moisture content of the brick walls. These results may be useful for other researchers dealing with brick masonry buildings from a similar period of time. The authors' intention was to present the existing poor technical condition of the brick masonry building and indicate its causes, as well as to present that a lack of appropriate maintenance can lead to a situation in which the life or health of residents is threatened.

Go to article

Authors and Affiliations

Anna Hoła
Łukasz Sadowski
Jacek Szymanowski
Download PDF Download RIS Download Bibtex

Abstract

Deterioration and defects in building components are key aspects to consider when assessing buildings’ conditions, as they may influence the building’s functionality. The typical defects include cracking, moisture, dampness, and architectural defects. This paper aims to evaluate the defects in a building using a non-destructive testing (NDT), which is the Infrared Thermography (IRT) method. A visual inspection method is then conducted to verify the results of the IRT method. The combination of IRT and visual inspection methods can identify the type of defect and level of severity more accurately. In both methods, ratings or scores are given to the collected defect data to determine the consistency between them. Two (2) buildings were selected as case studies; AA1 and BB2 are multistorey buildings. From those, 51 and 67 spots were taken from the IRT method and further verification process, respectively. Among the defects that were found were moisture, dampness, cracking, staining, chipping, and flaking paint. From all the findings, IRT was found to be comparable with the visual inspection results for serious defects such as cracking and flaking paint. However, IRT was believed to underestimate the architectural defects of staining and chipping. Even so, serious defects such as dampness were also underestimated in IRT due to the fact that the temperature difference between different ratings will not differ much. In conclusion, the IRT method has the potential to be used as a tool for building condition rating. However, it should be assisted with a visual inspection, and more research needs to be conducted for its practicality.
Go to article

Authors and Affiliations

Muhd Zubair Tajol Anuar
1
ORCID: ORCID
Noor Nabilah Sarbini
1
ORCID: ORCID
Izni Syahrizal Ibrahim
1
ORCID: ORCID
Siti Hajar Othman
2
ORCID: ORCID
Mohd Nadzri Reba
3
ORCID: ORCID

  1. Department of Structure & Materials, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  2. School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  3. Geoscience & Digital Earth Centre (Insteg), Faculty of Built Environment and Surveying, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

From the construction made in the “white box” technology, first of all tightness is required - on the structural elements there should not be any cracks or scratches, through which water could penetrate, which in consequence may lead to deformation of structural elements and even loosing of their load-bearing capacity. Among the methods enabling the location of weakened places in watertight concrete, the ground penetrating radar (GPR) method is effective because the local occurrence of water in the structure evokes a clear and unambiguous anomaly on the radargram. In addition, the GPR method allows you to indicate places where water flows without the necessity of excluding the object from use and interference in the construction layers. The designation of such locations will make it possible to undertake technical activities that can facilitate the takeover of water and thus ensure the desired load-bearing capacity and usability of the object. Using the GPR method, you can also designate places that have already been deformed – discontinuities or breaking. The article presents a case study of investigations that determine the causes of leakage of tunnels made in the “white box” technology in: twice within the bottom slab of the tunnel (1 GHz air-coupled and 400 MHz ground-coupled antenna) and once in the case of tunnel walls (1.6 GHz ground-coupled antenna).

Go to article

Authors and Affiliations

Anna Lejzerowicz
ORCID: ORCID
Małgorzata Wutke
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an example of the application of vibratory machining for castings based on the results of visual testing. The purpose of the work is to popularize non-destructive testing and vibratory machining as finishing process, especially in the case of cast objects. Visual testing is one of the obligatory non-destructive tests used for castings and welded joints. The basic requirements concerning the dimensional accuracy and surface texture of cast components are not met if visible surface flaws are detected. The tested castings, which had characteristic traces of the casting process, were subjected to vibratory machining. The machining with loose abrasive media in vibrating containers is aimed at smoothing the surface and reducing or completely removing flashes. To complement the visual testing were also conducted research on the contact profilometer Taylor Hobson PGI 1200. Particular attention was focused on measuring the height of flashes and changes in the surface of smoothed details based on BNIF No. 359 touch-visual patterns. Based on the work, it can be concluded that vibratory machining allows for removal flashes and smoothing of the surface of aluminum alloy cast objects.

Go to article

Authors and Affiliations

D. Bańkowski
ORCID: ORCID
P. Młynarczyk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Early detection of damage is necessary for the safe and reliable use of civil engineering structures made of concrete. Recently, the identification of micro-cracks in concrete has become an area of growing interest, especially when it comes to using wave-based techniques. In this paper, a non-destructive testing approach for the characterization of the fracture process was presented. Experimental tests were performed on concrete beams subjected to mechanical degradation in a 3-point bending test. Ultrasonic waves were registered on a specimen surface by piezoelectric transducers located at several points. Then, the signals were processed taking advantage of wave scattering due to micro-crack disturbances. For early-stage damage detection, coda wave interferometry was used. The novelty of the work concerns the application of the complex decorrelation matrix and the moving reference trace approach for better distinguishment of sensors located in different parts of a crack zone. To enhance coda wave-based damage identification results, optical imaging of crack development was performed by means of digital image correlation measurement. The results obtained showed that the coda wave interferometry technique can be successfully used as a quantitative measure of changes in the structure of concrete. The results also indicated that the course of decorrelation coefficient curves enabled the identification of three stages during degradation, and it depended on the location of acquisition points versus the crack zone.
Go to article

Authors and Affiliations

Magdalena Knak
1
ORCID: ORCID
Erwin Wojtczak
1
ORCID: ORCID
Magdalena Rucka
1
ORCID: ORCID

  1. Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology,Narutowicza 11/12, 80-233, Gdańsk, Poland

This page uses 'cookies'. Learn more