Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Silver nanoparticles (AgNPs) are widely used in numerous industries and areas of daily life, mainly as antimicrobial agents. The particles size is very important, but still not suffi ciently recognized parameter infl uencing the toxicity of nanosilver. The aim of this study was to investigate the cytotoxic effects of AgNPs with different particle size (~ 10, 40 and 100 nm). The study was conducted on both reproductive and pulmonary cells (CHO-9, 15P-1 and RAW264.7). We tested the effects of AgNPs on cell viability, cell membrane integrity, mitochondrial metabolic activity, lipid peroxidation, total oxidative and antioxidative status of cells and oxidative DNA damage. All kinds of AgNPs showed strong cytotoxic activity at low concentrations (2÷13 μg/ml), and caused an overproduction of reactive oxygen species (ROS) at concentrations lower than cytotoxic ones. The ROS being formed in the cells induced oxidative damage of DNA in alkaline comet assay. The most toxic was AgNPs<10 nm. The results indicate that the silver nanoparticles, especially less than 10 nm, may be harmful to the organisms. Therefore, risk should be considered when using nanosilver preparations and provide appropriate protective measures when they are applied.

Go to article

Authors and Affiliations

Lidia Zapór
Download PDF Download RIS Download Bibtex

Abstract

We analyzed DNA damage, mitotic activity and polyploidization in Crepis capillaris callus cells during short- and long-term in vitro culture, and the influence of plant growth regulators on these processes. Changes in the concentration of growth regulators altered the stability of callus. The level of DNA damage was highly dependent on the growth regulator composition of the medium. Cytokinin at high concentrations damaged DNA in the absence of auxin. Short- and long-term callus differed in sensitivity to growth regulators. Mitotic activity changed when callus was transferred to medium with modified growth regulators. Callus cell nuclear DNA content increased with age and in response to plant growth regulators. Hormones played a role in the genetic changes in C. capillaris callus culture. We demonstrated the usefulness of C. capillaris callus culture as a model for analyzing the effect of culture conditions, including plant growth regulators, on genetic stability.

Go to article

Authors and Affiliations

Witold Nawrocki
Dorota Siwińska
Jolanta Kwasniewska
Jolanta Maluszynska
Download PDF Download RIS Download Bibtex

Abstract

In this study, the cryoprotective effect of different doses of propolis (P) on bull semen, which has solid pharmacological properties thanks to its rich phenolic components, was investigated biochemically and physiologically. Semen samples were collected from Simmental breed bulls via the artificial vagina and pooled. After dividing into five groups, control (C: no additive) and four different P (200, 100, 50, and 25 μg/mL) groups, the final concentration was diluted to 16×106 per straw. Semen samples were equilibrated at 4°C for approximately 4 hours, then placed in French straws and frozen. After thawing, sperm motility and kinetic parameters, DNA integrity by single-cell gel electrophoresis, sperm abnormalities by liquid fixation, and lipid peroxidation levels by the colorimetric method was analyzed by Computer-Assisted Semen Analyzer. P added to the diluent showed no effect on motility and kinetic parameters at P25 and P50 (p>0.05), while P100 and P200 had a negative effect (p<0.001). The addition of P (25 and 50) showed a treatment effect on tail abnormality compared to C (p<0.05). Especially P50 had a positive effect on tail length, tail DNA, and tail movement, while P100 and P200 caused DNA damage (p<0.001). MDA levels increased in all P dose groups compared to C (p<0.001). This study has clearly demonstrated that P25 and P50 supplements could be used therapeutically to treat sperm tail abnormalities and prevent DNA damage in post-thawed bull sperm.
Go to article

Bibliography


Aitken RJ (2002) Epididymal cell types and their functions. In: Robaire B, Hinton BT (eds.), Active oxygen in spermatozoa during epididymal transit. Kluwer Academic/ Plenum Publishersds, New York, pp 435-447.
Akalın PP, Başpınar N, Çoyan K, Bucak MN, Güngör Ş, Öztürk C (2016) Effects of ultrasonication on damaged spermatozoa and mitochondrial activity rate. Turk J Vet Anim Sci 40: 195-199.
Alcay S, Toker MB, Onder NT, Gokce E (2017) Royal jelly supplemented soybean lecithin-based extenders improve post-thaw quality and incubation resilience of goat spermatozoa. Cryobiology 74: 81-85.
Amini S, Masoumi R, Rostami B, Shahir MH, Taghilou P, Arslan HO (2019) Effects of supplementation of Tris-egg yolk extender with royal jelly on chilled and frozen-thawed ram semen characteristics. Cryobiology 88: 75-80.
Ansari MS, Rakha BA, Malik MF, Andrabi SM, Ullah N, Iqbal R, Holt WV, Akhter S (2016) Effect of cysteine addition to the freezing extender on the progressive motility, viability, plasma membrane and DNA integrity of Nili Ravi buffalo (Bubalus bubalis) bull spermatozoa. J Appl Anim Res 44: 36-41.
Avdatek F, Yeni D, İnanç ME, Çil B, Tuncer PB, Türkmen R, Taşdemir U (2018) Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia 50: e12975
Büyükleblebici S, Tuncer PB, Bucak MN, Tasdemir U, Eken A, Büyükleblebici O, Durmaz E, Sarıözkan S, Endirlik BÜ (2014) Comparing ethylene glycol with glycerol and with or without dithiothreitol and sucrose for cryopreservation of bull semen in egg-yolk containing extenders. Cryobiology 69: 74-78.
Capucho C, Sette R, de Souza Predes F, de Castro Monteiro J, Pigoso AA, Barbieri R, Dolder MA, Severi-Aguiar GD (2012) Green Brazilian propolis effects on sperm count and epididymis morphology and oxidative stress. Food Chem Toxicol 50: 3956-3962.
De Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C (1997) Reactive oxygen species and sperm physiology. Rev Reprod 2: 48-54.
El-Battawy KA, Brannas E (2015) Impact of propolis on cryopreservation of Arctic Charr (Salvelinus alpinus) sperm. Int J Anim Vet Sci 2: 355.
El-Harairy MA, Eid LN, Zeidan AE, Abd El-Salaam AM, El-Kishk MA (2011) Quality and fertility of the frozen-thawed bull semen as affected by the different cryoprotectants and glutathione levels. J Am Sci 7: 791-801.
El-Seadawy IE, El-Nattat WS, El-Tohamy MM, Aziza SA, El-Senosy YA, Hussein AS (2017) Preservability of rabbit semen after chilled storage in tris based extender enriched with different concentrations of propolis ethanolic extract (PEE). Asian Pac J Reprod 6: 68-76.
El-Sherbiny A (2015) Effect of some bee products on reproductive phenomena of male New Zealand white rabbits. Egypt J Rabb Sci 25: 119-136.
El-Sheshtawy RI, El-Badry DA, El-Sisy GA, El-Nattat WS, Almaaty AM (2016) Natural honey as a cryoprotectant to improve Arab stallion post-thawing sperm parameters. Asian Pac J Reprod 5: 331-334.
Fakhrildin MB, Alsaadi RA (2014) Honey supplementation to semen freezing medium improves human sperm parameters post-thawing. J Family Reprod Health 8: 27-31.
Gilmore JA, Liu J, Gao DY, Critser JK (1997) Determination of optimal cryoprotectants and procedures for their addition and removal from human spermatozoa. Hum Reprod 12: 112-118.
Gulhan MF (2019) Therapeutic potentials of propolis and pollen on biochemical changes in reproductive function of L-NAME induced hypertensive male rats. Clin Exp Hypertens 41: 292-298.
Gundogan M, Yeni D, Avdatek F, Fidan AF (2010) Influence of sperm concentration on the motility, morphology, membrane and DNA integrity along with oxidative stress parameters of ram sperm during liquid storage. Anim Reprod Sci 122: 200-207.
Hashem NM, El-Hady AA, Hassan O (2013) Effect of vitamin E or propolis supplementation on semen quality, oxi- dative status and hemato-biochemical changes of rabbit bucks during hot season. Livestock Sci 157: 520-526.
Hashem NM, Hassanein EM, Simal-Gandara J (2021) Improving reproductive performance and health of mammals using honeybee products. Antioxidants 10: 336.
Hassan AA (2009) Effect of royal jelly on sexual efficiency in adult male rats. Iraqi J Vet Sci 23: 155-160.
Hu JH, Zan LS, Zhao XL, Li QW, Jiang ZL, Li YK, Li X (2010) Effects of trehalose supplementation on semen quality and oxidative stress variables in frozen-thawed bovine semen. J Anim Sci 88: 1657-1662.
Inanç ME, Çil B, Yeni D, Avdatek F, Orakçı D, Tuncer PB, Türkmen R, Taşdemir U (2019) The effect of green tea extract supplementation in bull semen cryopreservation. Kafkas Üniv Vet Fak Derg 25: 703-708.
Karacal F, Aral F (2008) Effect of the royal jelly on sperm quality in mice. Indian Vet J 85: 331-332.
Kasimanickam R, Pelzer KD, Kasimanickam V, Swecker WS, Thatcher CD (2006) Association of classical semen parameters, sperm DNA fragmentation index, lipid peroxidation and antioxidant enzymatic activity of semen in ram- lambs. Theriogenology 65: 1407-1421.
Khalifa EI, Mohamed MY, Abdel-Hafez MAM (2016) Possibility of using propolis as natural antibiotic instead of synthetic antibiotics in ram semen extenders. Egypt J Sheep Goat Sci 11: 1-14.
Kohguchi M, Inoue SI, Ushio S, Iwaki K, Ikeda M, Kurimoto M (2004) Effect of royal jelly diet on the testicular function of hamsters. Food Sci Tech Res 10: 420-423.
Kumar P, Pawaria S, Dalal J, Ravesh S, Bharadwaj S, Jerome A, Kumar D, Jana MH, Yadav PS (2019) Sodium alginate potentiates antioxidants, cryoprotection and anti-bacterial activities of egg yolk extender during semen cryopreservation in buffalo. Anim Reprod Sci 209: 106166.
Malik A (2018) Effects of honey supplementation into the extender on the motility, abnormality and viability of frozen thawed of bali bull spermatozoa. Asian J Anim Vet Advan 13: 109-113.
Mazzilli F, Rossi T, Sabatini L, Pulcinelli FM, Rapone S, Dondero F, Gazzaniga PP (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 26: 145-148.
Mohamed MY, Zanouny AI (2017) Effect of propolis as an extender supplementation on ram semen quality and sperm penetration ability. Egypt J Sheep and Goat Sci 12: 13-23.
deMoraes GV, Mataveli M, de Moura LP, Scapinello C, Mora F, Osmari MP (2015) Inclusion of propolis in rabbit diets and semen characteristics. Arq Ciências Vet Zool Unipar 17: 227-231.
Olayemi FO, Adeniji D, Oyeyemi MO (2011) Evaluation of sperm motility and viability in honey included egg yolk based extenders. Global Vet 7: 19–21.
Ottolenghi S, Rubino FM, Sabbatini G, Coppola S, Veronese A, Chiumello D, Paroni R (2019) Oxidative stress markers to investigate the effects of hyperoxia in anesthesia. Int J Mol Sci 20: 5492.
Pasupuleti VR, Sammugam L, Ramesh N, Gan SH (2017) Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 2017: 1259510.
Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120: 1689-1700.
Schafer S, Holzmann A (2000) The use of transmigration and spermac stain to evaluate epididymal cat spermatozoa. Anim Reprod Sci 59: 201-211.
Shahzad Q, Mehmood MU, Khan H, Husnad A, Qadeer S, Azam A, Naseer Z, Ahmad E, Safdar M, Ahmad M (2016) Royal jelly supplementation in semen extender enhances post-thaw quality and fertility of Nili-Ravi buffalo bull sperm. Ani Reprod Sci 167: 83-88.
Sharma RK, Agarwal A (1996) Role of reactive oxygen species in male infertility. Urology 48: 835-850.
Singh MP, Sinha AK, Singh BK (1995) Effect of cryoprotectants on certain seminal attributes and on the fertility of buck spermatozoa. Theriogenology 43: 1047-1053.
Soleimanzadeh A, Talavi N, Yourdshahi VS, Bucak MN (2020) Caffeic acid improves microscopic sperm parameters and antioxidant status of buffalo (Bubalus bubalis) bull semen following freeze-thawing process. Cryobiology 95: 29-35.
Taşdemir U, Büyükleblebici S, Tuncer PB, Coşkun E, Ozgürtaş T, Aydın FN, Büyükleblebici O, Gürcan IS (2013) Effects of various cryoprotectants on bull sperm quality, DNA integrity and oxidative stress parameters. Cryobiology 66: 38-42.
Taşdemir U, Tuncer PB, Büyükleblebici S, Özgürtaş T, Durmaz E, Büyükleblebici O (2014) Effects of various antioxidants on cryopreserved bull sperm quality. Kafkas Üniv Vet Fak Derg 20: 253-258.
Taşdemir U, Yeni D, İnanç ME, Avdatek F, Çil B, Türkmen R, Güngör Ş, Tuncer PB (2020) Red pine (Pinus brutia Ten) bark tree extract preserves sperm quality by reducing oxidative stress and preventing chromatin damage. Andrologia 52: e13603.
Ugur MR, Abdelrahman AS, Evans HC, Gilmore AA, Hitit M, Arifiantini RI, Purwantara B, Kaya A, Memili E (2019) Advances in cryopreservation of bull sperm. Front Vet Sci 6: 268.
Watson PF (2000) The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 60-61: 481-492.
Yeste M (2016) Sperm cryopreservation update: cryodamage, markers, and factors affecting the sperm freezability in pigs. Theriogenology 85: 47-64.
Yousef MI, Salama AF (2009) Propolis protection from reproductive toxicity caused by aluminium chloride in male rats. Food Chem Toxicol 6: 1168-1175.
Zini A, San Gabriel M, Libman J (2010) Lycopene supplementation in vitro can protect human sperm deoxyribonucleic acid from oxidative damage. Fertil Steril 94: 1033-1036.
Go to article

Authors and Affiliations

D. Yeni
1
M.F. Gülhan
2
M.E. İnanç
3
F. Avdatek
1
Ş. Güngör
3
R. Türkmen
4
P.B. Tuncer
5
U. Taşdemir
6

  1. Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Afyon Kocatepe University, Ahmet Necdet Sezer Campus, 03200, Afyonkarahisar, Turkey
  2. Department of Medicinal and Aromatic Plants, Vocational School of Technical Sciences, Aksaray University, Hacilar Harmanı Street, 12. Boulevard No: 2, 68100, Aksaray, Turkey
  3. Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Mehmet Akif Ersoy University, Istiklal Campus, 15030, Burdur, Turkey
  4. Afyon Kocatepe University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Ahmet Necdet Sezer Campus, 03200, Afyonkarahisar, Turkey
  5. Technical Sciences Vocational School, Mersin University, Çiftlikköy Campus, 33343, Yenişehir, Mersin, Turkey
  6. Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Aksaray University, Central Campus, 68100, Aksaray, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Ozone depletion at southern latitudes has recently increased the fluence of ultraviolet-B (UV-B) radiation striking the ground. This phenomenon has sparked much interest in unravelling the effects of this harmful radiation on living systems. UV-B radiation triggers several responses that affect plant physiology, morphology and biochemistry. In this study, the effect of supplemental UV-B radiation on DNA profile and chlorophyll a (CHl a) fluorescence characteristics were analyzed. An increase in the genetic variability of irradiated plants was observed in the Inter Sequence Simple Repeats products. The effect on photosynthesis was studied through fluorescence emissions. The obtained data showed that photochemical quenching (qP) decreased in irradiated plants. This effect may be attributed to a decrease in the number of open reaction centers of photosystem II (PSII) as suggested by the decreased values of minimal and maximal fluorescence. Likewise, non-photochemical quenching (NPQ) increased in both control and irradiated groups, but treated plants presented lower NPQ values than controls. The heat dissipation mechanism was also altered, probably due to a decrease in the yield of Fm´. According to these findings, UV-B radiation affects the CHl a fluorescence mechanisms and modifies DNA profile. Consequently, these changes influence the yield and growth of plants, which is an important consideration given the current climate change situation.
Go to article

Authors and Affiliations

Pedro Cuadra
1
ORCID: ORCID
Víctor Fajardo
1
ORCID: ORCID
Paula Pimentel
2
ORCID: ORCID
M. Alejandra Moya-Leon
3
ORCID: ORCID
Raúl Herrera
3
ORCID: ORCID

  1. Universidad de Magallanes, Facultad de Ciencias, Avenida Bulnes 01890, Punta Arenas 620000, Chile
  2. Centro Estudios Avanzado de Fruticultura (CEAF), Avenida Salamanca s/n, Los Choapinos, Rengo 2940000, Chile
  3. Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca 3465548, Chile

This page uses 'cookies'. Learn more