Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with analysis of samples made of Inconel 718 nickel superalloy, produced using direct metal laser sintering (DMLS), known as “sintering”, and precision casting technologies. The theoretical part is focused on the characteristics of producing samples of the nickel superalloy by modern additive methods (those for processing metallic materials) and by the conventional technology of precision casting. The practical part involves the investigation of the mechanical properties and texture of the surfaces of the tested samples. A significant part of this study is devoted to analysis of fracture surfaces and EDX experimental testing of TEM lamella by using of electron microscopy methods. The conclusions of this paper include a discussion, evaluation and explanation of both technologies applied on tested samples. Finally, the main benefits of using modern additive technologies in the design and production of heat-resistant components of turbochargers are discussed.

Go to article

Authors and Affiliations

J. Robl
J. Sedlák
Z. Pokorný
P. Ňuksa
I. Barényi
J. Majerík
Download PDF Download RIS Download Bibtex

Abstract

The paper is related to the material behaviour of additively manufactured samples obtained by the direct metal laser sintering (DMLS) method from the AlSi10Mg powder. The specimens are subjected to a quasi-static and dynamic compressive loading in a wide range of strain rates and temperatures to investigate the influence of the manufacturing process conditions on the material mechanical properties. For completeness, an analysis of their deformed microstructure is also performed. The obtained results prove the complexity of the material behaviour; therefore, a phenomenological model based on the modified Johnson–Cook approach is proposed. The developed model describes the material behaviour with much better accuracy than the classical constitutive function. The resulted experimental testing and its modelling present the potential of the discussed material and the manufacturing technology.
Go to article

Authors and Affiliations

Magda Stanczak
1 2
ORCID: ORCID
Alexis Rusinek
2
ORCID: ORCID
Paula Broniszewska
3
ORCID: ORCID
Teresa Fras
1
ORCID: ORCID
Piotr Pawłowski
3
ORCID: ORCID

  1. Department of Protection Technologies, Security & Situational Awareness, French-German Research Institute of Saint-Louis (ISL), 68301 Saint-Louis, France
  2. Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), Lorraine University, 57070 Metz, France
  3. Institute of Fundamental Technological Research (IPPT PAN), Polish Academy of Sciences, 02-106 Warsaw, Poland

This page uses 'cookies'. Learn more