Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The water of the Wisła-Czarne reservoir is of very low hardness and alkalinity. In spite ofhigh SUVA values it is not susceptible to enhanced coagulation. In order to achieve the assumed results, coagulation with ALS (aluminium sulphate) should be conducted in two optional technological systems - in a conventional system and in "in-bed" coagulation dependently ofwater quality and its temperature. Effective treatment with ALS is possible, even at low temperature of the water, but at strict technological parameters. However, because of significant variations of water quality, especially after rainstorms, it is very difficult to meet such requirements. Application of pre-hydrolyzed Flokor 1,2A instead ofALS enables to eliminate reagents to the pH adjustment and to apply "in-bed" coagulation when water supplied to the WTP is of low turbidity. To assure stable technological system operation, in aspect of raw water quality changes, some activities were also undertaken, i.e. modernization of rapid filters, which involved a drainage system and exchange of sand bed for anthracite-sand bed. Treatment based on direct filtration results in decrease of reagents usage and, what is especially important, effective DBPs precursors removal.
Go to article

Authors and Affiliations

Joanna Gumiińska
Marcin Kłos
Anna Pawłowska
Download PDF Download RIS Download Bibtex

Abstract

In order to improve the toughness of traditional epoxy resin, dibutyl phthalate (DBP) was introduced into the epoxy resin. The static mechanical performance of plasticized and unplasticized epoxy resin was evaluated. The test results showed that the DBP modified epoxy resin can obtain a higher toughness than conventional epoxy resin, but the elastic modulus and the tensile strength were slightly reduced. The low cycle fatigue test results indicated that the stress ratio and the stress level were two critical factors of fatigue life, which was increased with the growth of stress ratio. It was also found that the fatigue life of plasticized specimen was much less than that of the unplasticized specimen because of the plastic deformation. A logarithmic linear relationship was then established to predict the fatigue life for plasticized epoxy resin. The strain energy density was also applied to demonstrate the accumulation of energy loss. In addition, the fatigue toughness can be obtained by the hysteresis loop area method.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Linjian Song
Long Li

This page uses 'cookies'. Learn more