Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 87
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Large elongation in one de?nite direction of a crystal of cubic symmetry is considered. The equations of second order elasticity theory are applied. In this approximation three constants of the second order and six constants of the third order characterize the crystal. The stress is a function of the elongation direction. The elongation directions for which the stress reaches an extreme value have been analyzed.

Go to article

Authors and Affiliations

Z. Wesołowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the properties of a strain sensor, which was made using the micro hole collapse method and operates in the configuration of a Mach-Zehnder modal interferometer with a PM-1550-01 polarization maintaining photonic crystal fibre. The sensor’s transfer curve was determined analytically. Its strain sensitivity, determined from measurements, decreases slightly with increasing wavelength and is in a range from −2.01 to −2.23 pm/µε in the wavelength range 1520–1580 nm. Based on the Fourier analysis of the wavelength spectrum of the constructed sensor, the difference of the group refractive indices of the core and the cladding of the photonic crystal fibre was determined, which are in a range from 7.45·10−3 to 1.01·10−2. The temperature sensitivity of the sensor, determined on the basis of measurements performed in a range from 23 to 60◦C, is positive and equals 5.9 pm/K.
Go to article

Authors and Affiliations

Cezary Kaczmarek
Download PDF Download RIS Download Bibtex

Abstract

There exists a problem with an in situ diagnostics of contamination of ethyl alcohol in a human being exhaled air. When ethyl alcohol in a mouth blowing (in a gaseous state) exists, the characteristic C–H stretch absorption bands in –CH3 and –CH2 – functional groups in ethanol (CH3–CH2–OH) appear at a wavelength of λ = 3.42 μm. To investigate the presence of ethyl alcohol in exhaled human air, the light beam of λ = 3.42 μm is passing through an air sample. If one alternately measures the intensity of the investigated beam and the reference, a percentage of ethanol in the air sample can be estimated using a sensitive nondispersive infrared (NDIR) system with a stable operating flow mass detector. To eliminate a mechanical chopper and noise generating stepper motors, a photonic chopper as a liquid crystal shutter for λ = 3.42 μm has been designed. For this purpose, an innovative infrared nematic liquid crystal mixture was intentionally prepared. The working mixture was obtained by a selective removal of CH bonds and its exchange by heavier polar substituents, what ensures a lack of absorption band of C–H bonds. The paper presents theory, concept and final experimental results of the infrared nematic liquid crystals mixture and the liquid crystal shutter for breathalyzer applications.

Go to article

Authors and Affiliations

W. Piecek
L. Jaroszewicz
E. Miszczyk
Z. Raszewski
M. Mrukiewicz
P. Kula
K. Jasek
P. Perkowski
E. Nowinowski-Kruszelnicki
J. Zieliński
J. Kędzierski
M. Olifierczuk
U. Chodorow
P. Morawiak
R. Mazur
K. Kowiorski
P. Harmata
J. Herman
Download PDF Download RIS Download Bibtex

Abstract

Some eutectic stripes have been generated in a hexagonal (Zn) - single crystal. The stripes are situated periodically with the constant interstripes

spacing. The eutectic structure in the stripes consists of strengthening inter-metallic compound, Zn16Ti, and (Zn) – solid solution.

The rod-like irregular eutectic structure (with branches) appears at low growth rates. The regular lamellar eutectic structure is observed at

middle growth rates. The regular rod-like eutectic structure exists exclusively in the stripes at some elevated growth rates. A new

thermodynamic criterion is recommended. It suggests that this eutectic regular structure is the winner in a morphological competition for

which the minimum entropy production is lower. A competition between the regular rod-like and the regular lamellar eutectic growth is

described by means of the proposed criterion. The formation of branches within irregular eutectic structure is referred to the state of

marginal stability. A continuous transitions from the marginal stability to the stationary state are confirmed by the continuous

transformations of the irregular eutectic structure into the regular one.

Go to article

Authors and Affiliations

J. Szajnar
W. Wołczyński
S. Kjelstrup
D. Bedeaux
B. Billia
Download PDF Download RIS Download Bibtex

Abstract

A liquid crystal display (LCD) recycling process is needed to increase its efficiency by recovering the resources in addition to metals and plastics. This study investigates the pre-treatment process for recycling LCD glass. Recycling pre-treatment includes dismantling the LCD from the waste product, crushing the glass, and separating the glass particles from the impurities. Scanning electron microscopy confirmed that the oscillation milling process is more effective in maintaining uniform powder shape and size as compared to the cut milling process. The glass particles crushed by the oscillating mill, optimized at 1500 rpm, had a uniformly distributed particle size of less than 10 µm. These small particles were separated from the organic impurities, achieving a 98% pure powder that can be used as recycled raw materials. The proposed pre-treatment process for recycling LCD glass will enhance the ability to use waste glass as a valuable resource in the manufacturing of future displays.

Go to article

Authors and Affiliations

Seyul Kim
Yubin Kang
Leeseung Kang
Hyun Seon Hong
Chan Gi Lee
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of liquid crystal thermography for temperature determination and visualisation of two phase flow images on the studied surface. Properties and applications of thermochromic liquid crystals are discussed. Liquid crystals were applied for two-dimensional detection of the temperature of the heating foil forming one of the surfaces of the minichannel along which the cooling liquid flowed. The heat flux supplied to the heating surface was altered in the investigation and it was accompanied by a change in the color distribution on the surface. The accuracy of temperature measurements on the surface with liquid crystal thermography is estimated. The method of visualisation of two-phase flow structures is described. The analysis of monochrome images of flow structures was employed to calculate the void fraction for some cross-sections. The flow structure photos were processed using Corel graphics software and binarized. The analysis of phase volumes employed Techsystem Globe software. The measurement error of void fraction is estimated.

Go to article

Authors and Affiliations

Magdalena Piasecka
Download PDF Download RIS Download Bibtex

Abstract

Polarimetric optical fiber sensors based on highly birefringent (HB) polarization-maintaining fibers have focused great interest for last decades. The paper presents a novel modular fiber optic sensing system of potential industrial applications to measure temperature, hydrostatic pressure, and strain that is based on classical HB and photonic crystal fibers and can operate at visible and infrared wavelengths. The main idea of the system is a novel and replaceable fiber-optic head, which allows adjusting the measuring system both to the required range and type (strain, pressure or temperature) of the external measurand. We propose also a new configuration of the fiber optic strain gauge with a free cylinder and an all-fiber built-in analyzer based on the photonic crystal fiber filled with a liquid crystal. Additionally, strain sensitivities of various HB fibers operating at visible and infrared wavelengths range have been measured.

Go to article

Authors and Affiliations

T.R. Woliński
P. Lesiak
A.W. Domański
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sized cylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.

Go to article

Authors and Affiliations

M.S. Chychłowski
S. Ertman
K. Rutkowska
O. Strzeżysz
R. Dąbrowski
T.R. Woliński
Download PDF Download RIS Download Bibtex

Abstract

In this work studies on propagation properties of a microstructured polymer optical fibre infiltrated with a nematic liquid crystal are presented. Specifically, the influence of an infiltration method on the LC molecular alignment inside fibre air-channels and, thus, on light guidance is discussed. Switching between propagation mechanisms, namely the transition from modified total internal reflection (mTIR) to the photonic bandgap effect obtained by varying external temperature is also demonstrated.

Go to article

Authors and Affiliations

K.A. Rutkowska
K. Milenko
O. Chojnowska
R. Dąbrowski
T.R. Woliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research of metallic glass based on a Mg72Zn24Ca4 alloy. Metallic glass was prepared using induction melting and further injection on a spinning copper wheel. The X-ray diffractometer and differential scanning calorimeter (DSC) were used to investigate the phase transformation of the amorphous ribbon. The heat released in the crystallization process, during isothermal annealing, based on the differential scanning calorimeter investigation, was determined to be 166.18 Jg-1. The effect of isothermal annealing temperature on the kinetics of the amorphous alloy crystallization process using differential scanning calorimeter was investigated. For this purpose, two isothermal annealing temperatures were selected. The incubation time decreases as the temperature of the isothermal annealing increases from 300 to 252 seconds. The same relationship is visible in the case of duration of the phase transformation, which also decreases as the temperature of the isothermal annealing increases from 360 to 228 seconds. The obtained results show a significant influence of isothermal annealing temperature on the degree of phase transformation.

Go to article

Authors and Affiliations

J. Lelito
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of alloys plays an important role at their crystallization and influences the solid phase formation, and thus, microstructure and properties. The present paper studies the release of the heat of crystallization of alloyed wear-resistant cast irons in order to determine the quantitative patterns of the chemical composition influence to the kinetics of crystallization. The differential thermal analysis was applied to get the data of heat release, its rate at cast iron temperature decrease. The normalized dependence of the amount of crystallization heat over time was obtained. The main temperature parameters were analyzed and four stages at irons crystallization were established and characterized with their duration and released heat. The multiple correlation analysis allowed considering a numerous physical and chemical factors and distinguishing their role at crystallization of irons. As a result, the quantitative regularities are determined of influencing the content of alloying elements, impurities and carbides on a heat and time of crystallization at the different stages of solidification, which are of great importance in developing alloyed irons with required quality and properties.
Go to article

Authors and Affiliations

Y. Aftandiliants
1
ORCID: ORCID
S. Gnyloskurenko
1 2
ORCID: ORCID
H. Meniailo
3
ORCID: ORCID
V. Khrychikov
3
ORCID: ORCID
V. Lomakin
4
ORCID: ORCID

  1. National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Physical and Technological Institute of Metals and Alloys, National Academy of Sciences of Ukraine, Ukraine
  3. Ukrainian State University of Science and Technologies, Ukraine
  4. Central Ukrainian National Technical University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the effect of manganese on the crystallization process, microstructure and selected properties: cast iron hardness as well as ferrite and pearlite microhardness. The compacted graphite was obtained by Inmold technology. The lack of significant effect on the temperature of the eutectic transformation was demonstrated. On the other hand, a significant reduction in the eutectoid transformation temperature with increasing manganese concentration has been shown. The effect of manganese on microstructure of cast iron with compacted graphite considering casting wall thickness was investigated and described. The nomograms describing the microstructure of compacted graphite iron versus manganese concentration were developed. The effect of manganese on the hardness of cast iron and microhardness of ferrite and pearlite were given.

Go to article

Authors and Affiliations

Grzegorz Gumienny
ORCID: ORCID
B. Kurowska
ORCID: ORCID
P. Just
Download PDF Download RIS Download Bibtex

Abstract

A dual-wavelength optical polarimetric approach has been proposed as a means of elimination of the systematic errors and estimation of the optical anisotropy parameters for a single DKDP crystal. Our HAUP-related polarimeter uses two semiconductor lasers with the neighbouring wavelengths of 635 nm and 650 nm. Based on the temperature dependence analysis of small characteristic azimuths of light polarization with respect to the axis of the sample, we found the parameters of imperfections of polarization system. We acquired eigen waves ellipticities in a DKDP crystal and found perpendicular to the optic axis value of the optical rotatory power. Our results correlate positively with previously measured data for KDP crystals.

Go to article

Authors and Affiliations

Y. Shopa
M. Shopa
N. Ftomyn
Download PDF Download RIS Download Bibtex

Abstract

In article a two-dimensional photonic crystal (PhC) is considered and modelled as a new generation antireflection coating for optoelectronic devices. Traditional antireflective coatings (ARCs) reduce the reflection of the radiation only – the new generation of antireflective coatings should affect the distribution of the radiation also. Such functionality can be provided by the two-dimensional PhC which reduce the reflection and scatter transmitted light. Prior to the fabrication, the PhCs should be designed and analysed. Results of the analysis should provide quantitative means for choice of materials and design solutions. In work, we analyse the electromagnetic field distribution as Poynting vectors inside the materials of optoelectronic devices, in order to investigate the possibility of improving the construction of future optoelectronic devices. Furthermore, we calculate the reflection and transmission of that ARC. It’s a complex optic analysis of new generation of ARC. The numerical analysis has been performed with the FDTD method in Lumerical Software. In work, we consider the two-dimensional photonic crystal on the top surface of optoelectronic structures. We compared the results with the traditional ARC from these same parameters as PhC: thickness and material. As an example, we presented the application of modelled, photonic crystal, thin-film, GaAs solar cells with PhC on top. The efficiency of this solar cell, using the photonic crystal, was improved by 6.3% over the efficiency of this same solar cell without PhC. Thus, our research strongly suggests that the unique properties of the photonic crystal could be used as a new generation of ARC.

Go to article

Authors and Affiliations

D. Przybylski
S. Patela
Download PDF Download RIS Download Bibtex

Abstract

A sonic crystal consists of a finite-size periodic array of scatters embedded in a background material. One of the fascinating properties of sonic crystals is the focusing phenomenon. In this study, the near field focusing effect of a solid-air 2D sonic crystal lens with a square lattice configuration is investigated in the second frequency band. The band structure and equifrequency contour of the crystal are analyzed to reveal the dispersion of an acoustic wave on the crystal structure. The frequency dependence of the acoustic wave focalization by the sonic crystal flat lens is demonstrated via Finite Difference Time Domain simulation results and experimental measurements.

Go to article

Authors and Affiliations

Serkan Alagoz
Download PDF Download RIS Download Bibtex

Abstract

PCFs (Photonic Crystal Fibers) with ‘T’ – shaped core have been proposed in this paper. ‘T’ –shaped core PCF structures have been analyzed using two different background materials: silica and lead silicate. A total of 3600 rotation at an interval of 900 has been introduced in the design of PCF structures. PCF structures A, B, C and D with rotation of 00, 900, 1800 and 2700 have silica as wafer. Similarly PCF structures E, F, G and H with similar rotation have lead silicate as background material. Numerical investigations shows structures ‘D’, ‘F’, ‘G’ and ‘H’ to have anomalous dispersion. PCF structures ‘F’, ‘G’, and ‘H’ have reported birefringence of the order of 10-2. Besides, other PCF structures report birefringence of the order of 10-3. Ultra low confinement loss has been observed in all the investigated PCF structures. Moreover, splice loss observed by the structure is very low. Large mode area has been shown by all the designed PCF structures.

Go to article

Authors and Affiliations

Pranaw Kumar
Amrit Tripathy
Jibendu Sekhar Roy
Download PDF Download RIS Download Bibtex

Abstract

This paper outlines a measurement method of properties of microstructured optical fibers that are useful in sensing applications. Experimental studies of produced photonic-crystal fibers allow for a better understanding of the principles of energy coupling in photonic-crystal fibers. For that purpose, fibers with different filling factors and lattice constants were produced. The measurements demonstrated the influence of the fiber geometry on the coupling level of light between the cores. For a distance between the cores of 15 μm, a very low level (below 2%) of energy coupling was obtained. For a distance of 13 μm, the level of energy transfer to neighboring cores on the order of 2-4% was achieved for a filling factor of 0.29. The elimination of the energycoupling phenomenon between the cores was achieved by duplicating the filling factor of the fiber. The coupling level was as high as 22% in the case of fibers with a distance between the cores of 8.5 μm. Our results can be used for microstructured-fiber sensing applications and for transmission-channel switching in liquid-crystal multi-core photonic fibers.

Go to article

Authors and Affiliations

Jacek Klimek
Download PDF Download RIS Download Bibtex

Abstract

The analysis of influence of mould withdrawal rate on the solidification process of CMSX-4 single crystal castings produced by Bridgman

method was presented in this paper. The predicted values of temperature gradient, solidification and cooling rate, were determined at the

longitudinal section of casting blade withdrawn at rate from 1 to 6mm/min using ProCAST software. It was found that the increase of

withdrawal rate of ceramic mould results in the decrease of temperature gradient and the growth of cooling rate, along blade height. Based

on results of solidification parameter G/R (temperature gradient/solidification rate), maximum withdrawal rate of ceramic mould

(3.5 mm/min), which ensures lower susceptibility to formation process of new grain defects in single crystal, was established. It was

proved that these defects can be formed in the bottom part of casting at withdrawal rate of 4 mm/min. The increase of withdrawal rate to 5

and 6 mm/min results in additional growth of susceptibility of defects formation along the whole height of airfoil.

Go to article

Authors and Affiliations

J. Sieniawski
D. Szeliga
K. Kubiak
Download PDF Download RIS Download Bibtex

Abstract

Rare earth Nd-Fe-B, a widely used magnet composition, was synthesized in a shape of powders using gas atomization, a rapid solidification based process. The microstructure and properties were investigated in accordance with solidification rate and densification. Detailed microstructural characterization was performed by using scanning electron microscope (SEM) and the structural properties were measured by using X-ray diffraction. Iron in the form of α-Fe phase was observed in powder of about 30 μm. It was expected that fraction of Nd2Fe14B phase increased rapidly with decrease in powder size, on the other hand that of α-Fe phase was decreased. Nd-rich phase diffused from grain boundary to particle boundary after hot deformation due to capillary action. The coercivity of the alloy decreased with increase in powder size. After hot deformation, Nd2Fe14B phase tend to align to c-axis.

Go to article

Authors and Affiliations

Ju-Young Cho
Sardar Farhat Abbas
Yong-Ho Choa
Taek-Soo Kim
Download PDF Download RIS Download Bibtex

Abstract

Specimens of Si single crystals with different crystal orientation [100] and [110] were studied by Electro-Ultrasonic Spectroscopy (EUS) and Resonant Ultrasonic Spectroscopy (RUS). A silicon single crystal is an anisotropic crystal, so its properties are different in different directions in the material relative to the crystal orientation. EUS is based on interaction of two signals: an electric AC signal and an ultrasonic signal, which are working on different frequencies. The ultrasonic wave affects the charge carriers' transport in the structures and the intermodulation electrical signal which is created due to the interaction between the ultrasonic wave and charge carriers, is proportional to the density of structural defects. RUS enables to measure natural frequencies of free elastic vibrations of a simply shaped specimen by scanning a selected frequency range including the appropriate resonances of the measured specimens.

Go to article

Authors and Affiliations

Petr Sedlak
Pavel Tofel
Vlasta Sedlakova
Jiri Majzner
Josef Sikula
Lech Hasse
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.

Go to article

Authors and Affiliations

Krzysztof Skorupski
Download PDF Download RIS Download Bibtex

Abstract

In the existent world of continuous production systems, strong attention has been waged

to anonymous risk that probably generates significant apprehension. The forecast for net

present value is extremely important for any production plant. The objective of this paper

is to implement Monte Carlo simulation technique for perceiving the impact of risk and uncertainty

in prediction and forecasting company’s profitability. The production unit under

study is interested to make the initial investment by installing an additional spray dryer

plant. The expressive values acquied from the Monte Carlo technique established a range of

certain results. The expected net present value of the cash flow is $14,605, hence the frequency

chart outcomes confirmed that there is the highest level of certainty that the company

will achieve its target. To forecast the net present value for the next period, the results

confirmed that there are 50.73% chances of achieving the outcomes. Considering the minimum

and maximum values at 80% certainty level, it was observed that 80% chances exist

that expected outcomes will be between $5,830 and $22,587. The model’s sensitivity results

validated that cash inflows had a greater sensitivity level of 21.1% and the cash inflows for

the next year as 19.7%. Cumulative frequency distribution confirmed that the probability

to achieve a maximum value of $23,520 is 90 % and for the value of $6,244 it is about 10 %.

These validations suggested that controlling the expenditures, the company’s outflows can

also be controlled definitely.

Go to article

Authors and Affiliations

Zahid Hussain
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the energy cost is very high and this problem is carried out to seek techniques for improvement of the aerothermal and thermal (heat flow) systems performances in different technical applications. The transient and steady-state techniques with liquid crystals for the surface temperature and heat transfer coefficient or Nusselt number distribution measurements have been developed. The flow pattern produced by transverse vortex generators (ribs) and other fluid obstacles (e.g. turbine blades) was visualized using liquid crystals (Liquid Crystal Thermography) in combination with the true-colour image processing as well as planar beam of double-impulse laser tailored by a cylindrical lens and oil particles (particle image velocimetry or laser anemometry). Experiments using both research tools were performed at Gdańsk University of Technology, Faculty of Mechanical Engineering. Present work provides selected results obtained during this research.

Go to article

Authors and Affiliations

Jan A. Stąsiek
Marcin Jewartowski

This page uses 'cookies'. Learn more