Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this topic review the results of the X-band electron paramagnetic resonance (EPR) measurements of Mn, Co, Cr, Fe ions in YAlO3 (YAP) crystals and Fe ions in LiNbO3 (LNO) crystals and of chromium doped Bi12GeO20 (BGO) and Ca4GdO(BO3)3 single crystals, are presented. It is well known that the oxide crystals (for example:YAP, LNO, BGO) are one of the most widely used host materials for different optoelectronic applications. The nature of point defect of impurities and produced in the oxide crystal after irradiation by bismuth ions and after irradiation by the 235U ions with energy 9.47 MeV/u and fluency 5 × 1011 cm−1 is discussed. The latter is important for applications of these oxide crystal as laser materials.

Go to article

Authors and Affiliations

I. Stefaniuk
Download PDF Download RIS Download Bibtex

Abstract

This study mixes four different powders to produce Ti-6Cu-8Nb-xCr3C2 (x = 1, 3, and 5 mass%) alloys in three different proportions. The experimental results reveal that when 5 mass% Cr3C2 was added to the Ti-6Cu-8Nb alloys, the specimen possessed optimal mechanical properties after sintering at 1275°C for 1 h. The relative density reached 98.23%, hardness was enhanced to 67.8 HRA, and the transverse rupture strength (TRS) increased to 1821.2 MPa, respectively. The EBSD results show that the added Cr3C2 in situ decomposed into TiC and NbC during the sintering process, and the generated intermetallic compounds (Ti2Cu) were evenly dispersed in the Ti matrix. Furthermore, the reduced Cr atom acts as a β-phase stabilizing element and solid-solution in the Ti matrix. Consequently, the main strengthening mechanisms of the Ti-6Cu-8Nb-xCr3C2 alloys include dispersion strengthening, solid-solution strengthening, and precipitation hardening.
Go to article

Authors and Affiliations

Shih-Hsien Chang
1
ORCID: ORCID
Chen-Yu Weng
1
ORCID: ORCID
Kuo-Tsung Huang
2
ORCID: ORCID
Cheng Liang
1
ORCID: ORCID

  1. National Taipei University of Technology, Department of Materials and Mineral Resources Engineering, Taipei 10608, Taiwan, ROC
  2. National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, ROC

This page uses 'cookies'. Learn more