Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Ni625/WC composite coatings added with different amounts of Y 2O 3were prepared on the surface of 304 stainless steels by laser cladding. This study focused on the microstructure characteristics, microhardness, and corrosion performances of Ni625/WC composite coatings. The results showed that Y 2O 3 can effectively improve the corrosion resistance of the composite coatings. The microstructure from the bottom to the surface of composite coatings consists of plane crystal, cellular crystal, columnar crystal and equiaxed crystal. The Y 2O 3content of optimum composite coating was 1.0%. Its microhardness was three times that of matrix material. In addition, the corrosion current density of the composite coating was only 2% of Ni625/WC coating, which was attributed to the good properties of Y 2O 3 and appropriate Y 2O 3 refined microstructure.
Go to article

Authors and Affiliations

Jinling Yu
1
ORCID: ORCID
Zheng Zhentai
1
ORCID: ORCID
Shuai Li
1
ORCID: ORCID
Donghui Guo
1
ORCID: ORCID
Liang Chang
1
ORCID: ORCID

  1. Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
Download PDF Download RIS Download Bibtex

Abstract

The mechanism in which the coatings made by thermal spraying adhere to the substrate is in most cases of a mechanical nature, thus being dependent on the morphology of the substrate surface. This paper study how the texture of the substrate influences the behavior of dry sliding wear, a behavior based on the adhesion to the substrate of the analyzed coatings. For this purpose, a Co – base powder, was chosen for atmospheric plasma spraying. For the substrate, a rectangular profile made of low-alloy steel was chosen, the surface of which was textured by mechanical abrasion, in order to obtain different degrees of roughness: sample S1 – Ra1 = 1.59 µm, sample S2 – Ra2 = 2.32 µm, sample 3 – Ra3.1 = 1.25 μm, Ra3.2 = 3.88 μm. In the case of sample 3, the texturing was done on one direction, with an elongated profile, so that the effect of the main direction of dry sliding wear on the quality of the coating could be studied. The tests were performed on an Amsler test machine, at constant load, for 1 hour. The samples were mounted in a fixed position, and the wear occurred on the basis of the rotation of the metal disc, without lubrication. It was found that the coating of sample 1 was the most affected, resulting even a partial delamination, and the best behavior was recorded in the case of sample 3.1.
Go to article

Authors and Affiliations

D. Cristisor
1
ORCID: ORCID
D.L. Chicet
2
ORCID: ORCID
C. Cirlan Paleu
1
ORCID: ORCID
C. Stescu
1
ORCID: ORCID
C. Munteanu
1 3
ORCID: ORCID

  1. Gheorghe Asachi Technical University of Iasi, Department of Mechanical Engineering, Blvd. Mangeron, No. 61, 700050, Iasi, Romania
  2. Gheorghe Asachi Technical University of Iasi, Department of Materials Science and Engineering, Blvd. Mangeron, No. 41, 700050, Iasi, Romania
  3. Technical Sciences Academy of Romania, 26 Dacia Blvd, Bucharest, 030167, Romania
Download PDF Download RIS Download Bibtex

Abstract

This research aims to determine the influence of water-soaking on polyester-based coated woven fabrics for ultimate tensile strength and elongation at break under uniaxial tensile tests. The paper begins with a short survey of literature concerning the investigation of the determination of coated woven fabric properties. The authors carried out the uniaxial tensile tests with an application of a flat grip to establish the values of the ultimate tensile strength of groups of specimens treated with different moisture conditions. SEM fractography is performed to determine the cross-section structures of coated woven fabrics. The change in the mechanical properties caused by the influence of water immersion has not been noticed in the performed investigations.
Go to article

Authors and Affiliations

Andrzej Ambroziak
1
ORCID: ORCID
Paweł Kłosowski
1
ORCID: ORCID

  1. Gdansk University of Technology, Faculty of Civil and Environmental Engineering, St. Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland

This page uses 'cookies'. Learn more