Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the computational fluid dynamics modelling of carbon dioxide capture from flue gases in the post combustioncapture method, one of the available carbon capture and storage technologies. 30% aqueous monoethanolamine solution was used as a solvent in absorption process. The complex flow system including multiphase countercurrent streams with chemical reaction and heat transfer was considered to resolve the CO2 absorption. The simulation results have shown the realistic behaviour and good consistency with experimental data. The model was employed to analyse the influence of liquid to gas ratio on CO2 capture efficiency.

Go to article

Authors and Affiliations

Paweł Niegodajew
Dariusz Dariusz Asendrych
Stanisław Drobniak
Download PDF Download RIS Download Bibtex

Abstract

The installations of CO2 capture from flue gases using chemical absorption require a supply of large amounts of heat into the system. The most common heating medium is steam extracted from the cycle, which results in a decrease in the power unit efficiency. The use of heat needed for the desorption process from another source could be an option for this configuration. The paper presents an application of gas-air systems for the generation of extra amounts of energy and heat. Gas-air systems, referred to as the air bottoming cycle (ABC), are composed of a gas turbine powered by natural gas, air compressor and air turbine coupled to the system by means of a heat exchanger. Example configurations of gas-air systems are presented. The efficiency and power values, as well as heat fluxes of the systems under consideration are determined. For comparison purposes, the results of modelling a system consisting of a gas turbine and a regenerative exchanger are presented.
Go to article

Authors and Affiliations

Sebastian Lepszy
Tadeusz Chmielniak
Daniel Czaja
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with numerical modelling of carbon dioxide capture by amine solvent from flue gases in post-combustion technology. A complex flow system including a countercurrent two-phase flow in a porous region, chemical reaction and heat transfer is considered to resolve CO2 absorption. In order to approach the hydrodynamics of the process a two-fluid Eulerian model was applied. At the present stage of model development only the first part of the cycle, i.e. CO2 absorption was included. A series of parametric simulations has shown that carbon dioxide capture efficiency is mostly influenced by the ratio of liquid (aqueous amine solution) to gas (flue gases) mass fluxes. Good consistency of numerical results with experimental data acquired at a small-scale laboratory CO2 capture installation (at the Institute for Chemical Processing of Coal, Zabrze, Poland) has proved the reliability of the model.

Go to article

Authors and Affiliations

Dariusz Dariusz Asendrych
Paweł Niegodajew
Stanisław Drobniak

This page uses 'cookies'. Learn more