Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The use of ammonium nitrate due to its high nitrogen content (> 26%) has made it the most utilized fertilizer in agricultural areas. However, being easily accessible with this feature encouraged its use for different purposes. Ammonium nitrate is usually produced with large tonnage (> 50 ton/h) and high cost (> $20 million) production processes. Therefore, any changes that can be made in the process must be applied in the process so that the result can be achieved easily without increasing the cost in any way. In this study, it is aimed to reduce the explosion sensitivity of ammonium nitrate used for explosive purposes in terrorist attacks. Thus, it was aimed to solve the problem by adding various chemicals to the ammonium nitrate production process so that it can only be used for agricultural purposes. For this purpose, the production process was examined by adding carboxymethyl cellulose and polyethylene glycol to the ammonium nitrate production process and the accuracy of the results was tested by instrumental analysis methods.

Go to article

Authors and Affiliations

Ahmet Ozan Gezerman
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the effect of the organic compound representing the cellulose derivative - sodium salt of carboxymethyl cellulose (CMC/Na) on the structure of the main component of bentonite (B) - montmorillonite (MMT). Structural analysis revealed that the CMC/Na of different viscosity interacts with the mineral only via surface adsorption, causing at the same time partial or full delamination of its layered structure. This was confirmed by the XRD diffraction tests. Such polymer destructive influence on the structure of the modified main component of the bentonite limits the use of its composites as an independent binder in moulding sand technology, but does not exclude it from acting as an additive being a lustrous carbon carrier. According to the IR spectra of the B/CMC/Na materials, it can be stated that the interaction between the organic and inorganic parts is based on the formation of hydrogen bonds. That kind of the interpretation applies especially to the MMT modified in the bentonite with a lower viscosity polymer. The characteristics of the main IR absorption bands for composites with a higher viscosity polymer indicates the formation of less stable structures suggesting the random nature of the hydrogen bonds formation.

Go to article

Authors and Affiliations

S. Cukrowicz
B. Grabowska
K. Kaczmarska
A. Bobrowski
M. Sitarz
B. Tyliszczak
Download PDF Download RIS Download Bibtex

Abstract

Quenching technology requires the use of media with different cooling intensities and various shapes of cooling curves that show different particularities compared to that of conventional media such as water, oil, or emulsions. The use of synthetic quenching media is relatively new and also has multiple advantages such as non-flammability, safety in use and low cost. In this study, the cooling media tested was obtained by mixing 2 wt% carboxymethyl cellulose with 2 wt% NaOH in one litter of water. Moreover, three different temperatures (20°C, 40°C and 60°C) of the quenching media were evaluated. By dissolution in water, a synthetic solution with low viscosity, surfactant and lubricant was obtained. Because carboxymethyl cellulose is a biodegradable organic material, that is obtained as a by-product in the manufacture of paper, a basic substance with a preservative effect was added. According to this study, both the variation diagram of the heat transfer coefficient and the diagram of the cooling rates, during the cooling stages give important indications regarding the use of a liquid cooling medium for quenching.
Go to article

Authors and Affiliations

M.C. Perju
1
ORCID: ORCID
C. Nejneru
1
ORCID: ORCID
D.D. Burduhos-Nergis
1 2
ORCID: ORCID
P. Vizureanu
1 2
ORCID: ORCID
M.G. Minciuna
1
ORCID: ORCID
A.V. Sandu
1 2
ORCID: ORCID

  1. “Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science and Engineering, Prof. D. Mangeron Street, No. 41, 700050, Iasi, Romania
  2. Romanian Inventors Forum, Sf. P. Movila 3, Iasi, Romania

This page uses 'cookies'. Learn more