Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Applying new technologies basing on coal utilization demands precise identification of coal-bed composition. It is suggested, that such possibility is enabled by coal-bed logging with use of - adjusted to this aim - microlithotype analysis. Modification of this research method relies on ten-fold augmentation of 20 point grid size dimensions - up to 500 x 500 [...]. Maceral associations - as identified duringmicroscope observations - are placed in computer database according to their localization in logging. This allows for later graphic interpretation - microlithotype profile drawing. 13 associations has been educed in description, in majority being consistent with commonly used microlithotypes. However, a few changes has been introduced: in description of vitrite, telovitrite, macroscopically recognized in logging as vitrine layers, has been distinguished, as well as detro-gelo-vitrite, macroscopically recognized in logging as durain, while within bimaceralic microlithotypes there has been distinguished: vitrinertite (W), vitrinertite (I), clarite (W), clarite (I), durite (L), durite (I), all on the basis of dominant ingredient named in parenthesis. Accepted research methodology enables precise characteristics of petrographic variation within coal-bed logging. This allows especially to describe variation within dull coal (durain). Basing on research results, it is suggested that the biggest share in seam composition belongs to duroclarite - 23.8%, then vitrite - 18.7% and clarodurite - 17.6%, lower share of few percent belongs to: vitrinertite (I), vitrinertite (W), inertite, clarite (W), vitrinertoliptite, durite (I), durite (L), while both liptite and clarite (L) are less than one percent . Sequence of following microlithotypes also illustrate facies variation, what allows interpretation of environments of peat deposition in paleo-peat bog 116/2. Dominating percentage in log belongs to Forest Moor facies - 33.5%, while the lowest is Forest Terrestial Moor - 12.5%.

Go to article

Authors and Affiliations

Jacek Misiak
Download PDF Download RIS Download Bibtex

Abstract

This paper presents geochemical data for 171 core samples of the Carboniferous coal-bearing series and the Miocene cove from the central part of the Upper Silesian Coal Basin. Major oxide concentrations (Al 2O 3, SiO 2, Fe 2O 3, P 2O 5, K 2O, MgO, CaO, Na 2O, K 2O, MnO, TiO 2, and Cr 2O 3) were obtained using XRF. Trace and major elements (Mo, Cu, Pb, Zn, Ni, Co, U, Cr, V, Mn, As, Th, Sr, Cd, Sb, Bi, Ba, Ti, W, Zr, Ce, Nb, Ta, Be Sc) were analysed ICP-MS. The main goals of this study were to demonstrate the distribution, as well as the stratigraphical variability, of the selected elements and to determine whether chemostratigraphy tools could be effectively applied to analyze Carboniferous and Miocene deposits of the USCB. Geochemical studies have shown showed different geochemical features of the samples from the Carboniferous and the Miocene. The diversity is mainly expressed in the enrichment of Miocene sediments in Ca and Sr related to biogenic carbonate material. It was also stated that the concentrations of trace elements associated with the detrital fraction, such as Zn, Cr, Co, Ba, Ti, Zr, Nb, and Sc show slightly higher values in Carboniferous sediments. On the basis of the content of Ti, Zr, and Nb, as well as ratios such as Th/U, Zr/Th, Ti/Zr, and TiO 2/K 2O, units with different inputs of the terrigenous fraction can be identified in both Carboniferous and Miocene formations. The paper shows that chemostratigraphy can be used as a stratigraphic and correlation tool for the Carboniferous and the Miocene deposits of the USCB.
Go to article

Authors and Affiliations

Ewa Krzeszowska
1
ORCID: ORCID

  1. Silesian University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The fusulinid foraminifers of Schellwienia arctica (Schellwien, 1908) have been investigated from Polakkfjellet Mt., south Spitsbergen, and used as biostratigraphic marker for the latest Carboniferous earliest Permian strata of the Treskelodden Formation. A series of thin sections enable to investigate the internal structure and growth pattern of individual specimens. The observed variation of growth suggests dynamic environmental conditions at the investigated location and most likely over one-year long life span of this foraminifer.

Go to article

Authors and Affiliations

Błażej Błażejowski
Aleksandra Hołda-Michalska
Krzysztof Michalski
Download PDF Download RIS Download Bibtex

Abstract

The aim of geological investigations the results of which are given in this paper was identify the presence of Carboniferous coal in the area south of Homsund (Figs. 1 and 2). The field investigations were carried out in the summer of 1979 within the scientific expedition organized by the Institute of Geophysics of the Polish Academy of Sciences (problem MR-II-16/B). The investigations covered the northwestern part of Sörkappland, south of Hornsund and west of the Wurmbrandegga and Wiederfjellet (Fig. 2).

Go to article

Authors and Affiliations

Ireneusz Lipiarski
Stanisław Ćmiel
Download PDF Download RIS Download Bibtex

Abstract

The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded

numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes

Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010,

and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long,

monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably representing

the head cover or the spine-brush complex. A review of the available information on the fossil record of

Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the

Middle Permian (Capitanian).

Go to article

Authors and Affiliations

Michał Ginter
Download PDF Download RIS Download Bibtex

Abstract

Campyloprion Eastman, 1902 is a chondrichthyan having an arched symphyseal tooth whorl similar to that of

Helicoprion Karpinsky, 1899, but less tightly coiled. The holotype of Campyloprion annectans Eastman, 1902,

the type species of Campyloprion, is of unknown provenance, but is presumed to be from the Pennsylvanian

of North America. Campyloprion ivanovi (Karpinsky, 1922) has been described from the Gzhelian of Russia.

A partial symphyseal tooth whorl, designated as Campyloprion cf. C. ivanovi, is reported from the Missourian

Tinajas Member of the Atrasado Formation of Socorro County, New Mexico, USA. Partial tooth whorls from

the Virgilian Finis Shale and Jacksboro Limestone Members of the Graham Formation of northern Texas, USA,

are designated as Campyloprion sp. Two partial tooth whorls from the Gzhelian of Russia that were previously

referred to C. ivanovi are designated as Campyloprion cf. C. annectans. The age of Toxoprion lecontei (Dean,

1898), from Nevada, USA, is corrected from the Carboniferous to the early Permian. An alternative interpretation

of the holotype of T. lecontei is presented, resulting in a reversal of its anterior-to-posterior orientation. The

genera Helicoprion, Campyloprion, and Shaktauites Tchuvashov, 2001 can be distinguished by their different

spiral angles.

Go to article

Authors and Affiliations

Itano Wayne M.
Lucas Spencer G.
Download PDF Download RIS Download Bibtex

Abstract

The quality of coal has been analyzed basing on the data from geological exploration and chemical – geological analyses of coal carried out on the samples obtained from the boreholes and mining pits. The operated coal seams indexed as 382 and 385/2 reveals the changeable morphology due to the thickness of carbon shoals and stent intergrowths. The other parameters, such as the ash content or the calorific value are strongly linked with the non-coal rock interlayers, which presence causes the decrease in the calorific value and increase in the amount of after-burning ash. These parameters are less dependable on the sedimentation environment of the coal formation material. The content of total sulfur in the analyzed seams does not show any link with the values of the parameters analyzed before. The total sulfur is made up from sulphide gathered in coal and sulphates deriving from the decomposition of plants and supplied by deposit waters in different phases of coal seam formation. The obtained results could be useful in the reconnaissance of the prospective seams lying below the currently exploited ones (e.g. 389) and the seams in the neighboring areas.

Go to article

Authors and Affiliations

Jacek Misiak
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The extinct arachnid order Trigonotarbida Petrunkevitch, 1949 is reported here for the first time from Ukraine. The material consists of an opisthosoma preserved in ventral view from the upper Carboniferous (lower Moscovian; Paralegoceras–Eowellerites ammonoid zone) of the Gorlivka locality in the Donets Basin, eastern Ukraine. Formal assignment to a family or genus is difficult, but the preserved ventral anatomy is consistent with a member of the families Aphantomartidae Petrunkevitch, 1945, Kreischeriidae Haase, 1890 or Eophrynidae Karsch, 1882. It is noteworthy for expanding the known distribution of trigonotarbids in Europe and is only the second Palaeozoic arachnid to be formally described from Ukraine; the other being the carapace of a whip scorpion (Thelyphonida Latreille, 1804) from Lomovatka in the Luhansk Region, also in the Donets Basin.
Go to article

Authors and Affiliations

Jason A. Dunlop
1
Vitaly S. Dernov
2

  1. Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, D-10115 Berlin, Germany
  2. Institute of Geological Sciences, National Academy of Sciences of Ukraine, Oles Honchar Street 55b, 01054 Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The Family Neokoninckophyllidae and its type genus Neokoninckophyllum Fomichev, 1939 (type species: N. tanaicum Fomichev, 1939) are discussed and emended. In addition, the genera Orygmophyllum Fomichev, 1953 and Yuanophylloides Fomichev, 1953, originally included in the Families Campophyllidae Wedekind, 1922 and Lophophyllidae Grabau, 1928, respectively, are emended as well and transferred to the Neokoninckophyllidae. Two early Bashkirian species, viz. Yuanophylloides rectus (Vassilyuk in Aizenverg et al., 1983) and Y. inauditus (Moore and Jeffords, 1945), and the Moscovian Neokoninckophyllum sp. nov. are described on the basis of new collections from the Donets Basin. Neokoninckophyllum tanaicum, Yuanophylloides gorskyi Fomichev, 1953 (both Moscovian in age) and Y. cruciformis Fomichev, 1953 (latest Bashkirian), are redescribed on the basis of peels taken from Fomichev’s (1953) type specimens. Derivation of the Family Neokoninckophyllidae from the Subfamily Dibunophyllinae Wang, 1950 is postulated and phylogenetic links within the former are hinted at. The occurrence of Yuanophylloides inauditus in both the Donets Basin and the Western Interior Province of North America points to marine communication between those areas during the Bashkirian. The slightly earlier appearance of the oldest neokoninckophyllids in the Donets Basin, in comparison to North America (i.e., R1 vs R2 ammonoid biozones), documents the common roots and monophyletic development of the Neokoninckophyllidae in both areas.

Go to article

Authors and Affiliations

Jerzy Fedorowski
Download PDF Download RIS Download Bibtex

Abstract

The Family Kumpanophyllidae Fomichev, 1953, synonymised by Hill (1981) with the Family Aulophyllidae Dybowski, 1873, is emended and accepted as valid. The new concept of this family, based on both new collections and discussion on literature data, confirms the solitary growth form of its type genus Kumpanophyllum Fomichev, 1953. However, several fasciculate colonial taxa, so far assigned to various families, may belong to this family as well. The emended genus Kumpanophyllum forms a widely distributed taxon, present in Eastern and Western Europe and in Asia. Its Serpukhovian and Bashkirian occurrences in China vs Bashkirian occurrences in the Donets Basin and in Spain, may suggest its far-Asiatic origin, but none of the existing taxa can be suggested as ancestral for that genus. Thus, the suborder position of the Kumpanophyllidae remains unknown. Four new species: K. columellatum, K. decessum, K. levis, and K. praecox, three Kumpanophyllum species left in open nomenclature and one offsetting specimen, questionably assigned to the genus, are described.

Go to article

Authors and Affiliations

Jerzy Fedorowski
Download PDF Download RIS Download Bibtex

Abstract

The paper focuses on the taxonomic description of the lower Carboniferous (uppermost Tournaisian to middle Viséan) solitary rugose corals from bedded limestone and shale units in the Flett Formation in the Jackfish Gap (eastern Liard Range), northwestern Canada. The corals described herein include 12 species representing the genera Ankhelasma Sando, 1961, Bradyphyllum Grabau, 1928, Caninophyllum Lewis, 1929, Cyathaxonia Michelin, 1847, Ekvasophyllum Parks, 1951, Enniskillenia Kabakovich in Soshkina et al., 1962, Vesiculophyllum Easton, 1944 and Zaphrentites Hudson, 1941. Two of these species are new (Ankhelasma canadense sp. nov. and Ekvasophyllum variabilis sp. nov.) and 6 taxa are described in open nomenclature. The distribution and relative abundance of solitary Rugosa in Europe and the Liard Basin confirm the geographical proximity of those areas and the open marine communication between them during the early Carboniferous. It therefore represents an important contribution to the determination of the time of isolation of the western Laurussia shelf fauna from that of southeastern Laurussia, as well as the time of the possible emergence of species from southeastern Laurussia into the western Laurussia seas. Of particular importance here are cosmopolitan taxa and the timing of their disappearance from the fossil record.
Go to article

Authors and Affiliations

Edward Chwieduk
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Roemeripora tollinoides sp. n. (Anthozoa, Tabulata) is described from Upper Carboniferous strata of SW Nordenskiöld Land (Ingeborgfiellet), Bellsund area in West Spistbergen (Svalbard). The new species is characteristic for a phacelo-cerioid structure of entire corallum.

Go to article

Authors and Affiliations

Aleksander Nowiński
Download PDF Download RIS Download Bibtex

Abstract

The Lidfjellet thrust is the most prominent tectonic structure in the Lidfjellet-Řyrlandsodden fold zone, which stretches NNW-SSE along the western coast of Sřrkapp Land in Spitsbergen. This paper provides a reinterpretation of the Lidfjellet structure, with particular reference to lithostratigraphy of the autochthonous and overthrust sequences involved, and to the position of the thrust surface. Geological and palynologicalal data indicate that the sequence attributed previously to the Lower Cretaceous Helvetiafjellet Formation of the autochthonous cover represents in fact the Carboniferous (Viséan) Sergeijevfjellet Formation forming the lower part of the overthrust unit. The youngest deposits involved in tectonic structures of the Lidfjellet-Řyrlandsodden fold zone are of Upper Jurassic age.

Go to article

Authors and Affiliations

Krzysztof P. Krajewski
Marzena Stempień-Sałek
Download PDF Download RIS Download Bibtex

Abstract

Long-term studies were performed on the development of plant communities in dumping grounds after hard coal mining. The communities were initiated by sowing grass seeds either directly in the ground with mineral fertilizing, or on separate surfaces covered with a layer of soil. The development of plant communities was assessed in various time intervals within the 30-year period. The studies concerning flora applied the Braun-Blanguet method, as well as botanical-gravimetric method. The size of biomass of surface herbaceous plants has been determined in a gravimetric manner. Plant communities with the participation of Festuca ovina initially make up monocultures, while their further development after 30 years led to the tree development of turf-like community with Betu/a verucosa and Pinus sylvestris. Such a community shows signs of substantial durability and high usability. Short-lasting grass types initiate the development of communities with Calamagrostis epigejos. On the ground covered with a layer of mineral soil the initial development of plant communities depended upon: bank of seeds in the ground, air and water conditions formed and trophic properties of the soil. Depletion of nutrients resulted in lowered production of biomass, while its collection enriched flora composition of the community, enabling the growth and development of short heliophilous plan. Depletion of plants nutrients, as well as accumulation of unmoved green biomass enabled the expansive species of Calamagrostis epigejos to settle in plant communities. The recognized natural processes in difficult habitats, initiated by grass sowing, provide the basis for correct biological reclamation of lands of Carboniferous rock waste.
Go to article

Authors and Affiliations

Anna Patrzałek
Download PDF Download RIS Download Bibtex

Abstract

Inconsistency in the approach to the corals included by different authors in the families Tachylasmatidae Grabau, 1928 and Pentaphyllidae Schindewolf, 1942 are discussed in the context of their relationship vs homeomorphy to the Family Plerophyllidae Koker, 1924. Following Schindewolf (1942), the pentaphylloid or cryptophylloid early ontogeny, typical of the former two families, is contrasted with the zaphrentoid ontogeny typical of the latter family. Comprehensive analysis proves the independent taxonomic position of the Suborder Tachylasmatina Fedorowski, 1973. The taxa described herein support this idea. The relationship of the two families: Tachylasmatidae and Pentaphyllidae within the framework of this suborder are suggested. A new genus left in open nomenclature (represented by a single specimen) and three new species, Pentaphyllum sp. nov. 1, ?Pentaphyllum sp. nov. 2 and Gen. et sp. nov. 1 are described from lower Bashkirian deposits.
Go to article

Bibliography

Aizenverg, D.E., Astakhova, T.V., Berchenko, O.I., Brazhnikova, N.E., Vdovenko, M.V., Dunaeva, N.N., Zernetskaya, N.V., Poletaev, V.I. and Sergeeva, M.T. 1983. Upper Serpukhovian Substage in the Donets Basin, 160 pp. Akademia Nauk Ukrainskoi SSR. Institut Geologicheskikh Nauk. Naukova Dumka; Kyiv.
Carruthers, R.G. 1919. A remarkable Carboniferous coral. The Geological Magazine, 56, 436–441.
Dana, J.D. 1846. Genera of fossil corals of the family Cyathophyllidae. American Journal of Sciences and Arts, 1, 178–189.
Easton, W.H. 1944. Corals from the Chouteau and related formations of the Mississippi Valley Region. State Geological Survey. Report of Investigations, 97, 1–93.
Ezaki, Y. 1991. Permian corals from Abadeh and Julfa, Iran, West Tethys. Journal of the Faculty of Sciences, Hokkaido University, 23, 53–146.
Fan, Y.N., Yu, X.G., He, Y.X., Pan, Y.T., Li, X., Wang, F.Y., Tang, D.J., Chen, S.J., Zhao, P.R. and Liu, J.J. 2003. The late Palaeozoic rugose corals of Xizang (Tibet) and adjacent regions and their palaeobiogeography, 679 pp. National Science Foundation of China. Hunan Science and Technology Press; Hunan. Fedorowski, J. 1973. Rugose corals Polycoelaceae and Tachylasmatina subord. n. from Dalnia in the Holy Cross Mts. Acta Geologica Polonica, 23, 89–135.
Fedorowski, J. 1981. Carboniferous corals: distribution and sequence. Acta Palaeontologica Polonica, 26 (2), 87–160.
Fedorowski, J. 1997. Remarks on the paleobiology of Rugosa. Geologos, 2, 5–58.
Fedorowski, J. 2009a. On Pentamplexus Schindewolf, 1940 (Anthozoa, Rugosa) and its possible relatives and analogues. Palaeontology, 52 (2), 297–322.
Fedorowski, J. 2009b. Revision of Pentaphyllum De Koninck (Anthozoa, Rugosa). Palaeontology, 52 (3), 569–591.
Fedorowski, J. 2009c. Early Bashkirian Rugosa (Anthozoa) from the Donets Basin, Ukraine. Part. 1. Introductory considerations and the genus Rotiphyllum Hudson, 1942. Acta Geologica Polonica, 59, 1–37.
Fedorowski, J. 2010. Does similarity in rugosan characters and their functions indicate taxonomic relationship? Palaeoworld, 19 (3–4), 374–381.
Fedorowski, J. 2012. On three rugose coral genera from Serpukhovian strata in the Upper Silesian Coal Basin, Poland. Acta Geologica Polonica, 62, 1–33.
Fedorowski, J. and Bamber, E.W. 2001. Guadalupian (Middle Permian) solitary rugose corals from the Degerbols and Trold Fiord formations, Ellesmere and Melville Islands, Canadian Arctic Archipelago. Acta Geologica Polonica, 51, 31–79.
Flügel, H.W. 1968. Rugose Korallen aus den Oberen Nesen-Formation (Dzhulfa Stufe, Perm) des Zentralen Elburz (Iran). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 130, 275–304.
Flügel, H.W. 1972. Die paläozoischen Korallenfunde Ost-Irans. 2. Rugosa und Tabulata der Jamal-Formation (Darwasian?, Perm), Jahrbuch der Geologischen Bundesanstalt, 115, 49–102.
Flügel, H.W. 1973. Rugose Korallen aus dem oberen Perm Ost-Grönlands. Verhandlungen der geologischen Bundesanstalt, 1, 1–57.
Flügel, H.W. 1991. Rugosa aus dem Karbon der Ozbak-Kuh- Gruppe Ost-Irans. Jahrbuch der geologischen Bundesanstalt, 134 (4), 657–688.
Flügel, H.W. 1997. Korallen aus dem Perm von S-Tunesien, W-Iran und NW-Thailand. Österreichische Akademie der Wissenschaften. Sitzungsberiche Mathematisch-naturwissenschaftliche Klasse. Abteilung 1. Biologische Wissenschaften und Erdwissenschaften, 204, 79–109.
Frech, F. and Arthaber, G.A. 1900. Über das Paläozoikum in Hocharmenien und Persien mit einem Anhang über die Kreide von Sirab in Persien. Beiträge zur Paläontologie und Geologie der Österreich-Ungarns, 12, 161–308.
Fromentel, E. de 1861. Introduction à l’étude des éponges fossils. Mémoires de la Société Linnéense de Normandie, 11, 1–150.
Gerth, H. 1921. Die Anthozoën der Dyas von Timor. Palaeontologie von Timor, 9 (16), 65–147.
Gervais, P. 1840. Astrée, Astraea. In: Dictionnaire des Sciences Naturelles Paris, Supplement, v. 1, 481–487. F.G. Levrault; Paris, Strasbourg.
Grabau, A.W. 1922. Palaeozoic corals of China. Part I. Tetraseptata. Palaeontologia Sinica, Series B, 2 (1), 1–76.
Grabau, A.W. 1928. Palaeozoic corals of China. Part I. Tetraseptata II. Second contribution to our knowledge of the streptelasmoid corals of China and adjacent territories. Palaeontologia Sinica, Series B, 2 (2), 1–175.
Hill, D. 1981. Coelenterata, Supplement 1, Rugosa and Tabulata. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part F, F1–F762. Geological Society of America and University of Kansas Press; Boulder, Colorado and Lawrence, Kansas.
Hinde, G.J. 1890. Notes on the Palaeontology of Western Australia 2. Corals and Polyzoa. The Geological Magazine, Series 3, 7, 194–204.
Hudson, R.G.S. 1936a. On the Lower Carboniferous corals: Rhopalolasma gen. nov. and Cryptophyllum Carr. Proceedings of the Yorkshire Geological Society, 23, 1–12.
Hudson, R.G.S. 1936b. The development and septal notation of the Zoantharia Rugosa (Tetracoralla). Proceedings of the Yorkshire Geological Society, 23, 68–78.
Ilina, T.G. 1965. Late Permian and Early Triassic Tetracorals from Transcaucasus. Trudy Paleontologicheskogo Instituta, Akademia Nauk SSSR, 107, 1–104. [In Russian]
Ilina, T.G. 1984. Historical development of corals. Suborder Polycoeliina. Trudy Paleontologicheskogo Instituta, Akademia Nauk SSSR, 198, 1–184. [In Russian]
Koker, E.M.J. 1924. Anthozoen uit het Perm van het Eiland Timor. 1. Zaphrentidae, Plerophyllidae, Cystiphyllidae, Amphiastraeidae. Jaarboek van het Mijnwezen in Nederlandsch Oost-Indië, 51, 1–50.
Koninck, L.G. de. 1872. Nouvelles recherches sur les animaux fossils du terrain carbonifère de la Belgique. Part. 1. Bulletin de l’Academie Royalle des Sciences des Letters et des Beaux-Arts de Belgique, 39, 1–178.
Kullmann, J. 1965. Rugose Korallen der Cephalopoden Facies und ihre Verbreitung im Devon des südöstlichen Kantabrischen Gebirges (Nordspanien). Akademie der Wissenschaften und der Literatur. Abhandlungen der mathematisch- wissenschaftliche Klasse, 2, 1–136.
Lavrusevich, A.I. 1968. Rugosa of the post-Ludlovian deposits of the Zeravshan River Valley (Central Tadzhikistan), 102–130. In: Sokolov, B.S. and Ivanovsky, A.B. (Eds), Biostratigraphy of the boundary deposits of the Silurian and Devonian. Nauka; Moscow. [In Russian]
Milne Edwards, H. and Haime, J. 1850–1852. A monograph of the British fossil corals. Monograph of the Palaeontographical Society, 1850 (1–71), 1851 (72–146), 1852 (147–210). Palaeontographical Society; London.
Počta, F. 1902. Anthozoaires et Alcyonaires. In: Barrande, J., Systême Silurien du centre de la Bohême, part 1, vol. 8, pt. 2, i–viii + 1–347. The author; Prague, Paris.
Poletaev, V.I., Vdovenko, M.V., Shchoglev, O.K., Boyarina, N.I. and Makarov, I.A. 2011. The stratotypes of the regional subdivisions of Carboniferous and Lower Permian Don-Dneper Depression and their biostratigraphy, 236 pp. Logos; Kyiv. [In Ukrainian]
Poty, E. 1981. Recherches sur les tétracoralliaires et les hétérocoralliaires du Viséen de la Belgique. Mededelingen rijks geologische dienst, 35-1, 1–161.
Rodríguez, S. and Said, I. 2009. Descripción de los corales from Peñarroya-Pueblonuevo (Córdoba) y El Casar (Badajos). Colloquios de Paleontologia, 59, 7–27.
Rothpletz, A. 1892. Die Perm-, Trias- und Jura-Formationen auf Timor und Rotti im indischen Archipel. Palaeontographica, 39, 57–106.
Rowett, C.L. 1969. Upper Paleozoic stratigraphy and corals from the east-central Alaska Range, Alaska. Arctic Institute of North America, Technical Paper, 23, 1–120.
Schindewolf, O.H. 1940. “Konwergenzen” bei Korallen und bei Ammoneen. Forschrift für Geologie und Palaeontologie, 12, 389–392.
Schindewolf, O.H. 1942. Zur Kenntnis der Polycoelien und Plerophyllen. Eine Studie über den Bau der “Tetracorallen” ind ihre Beziehungen zu den Madreporarien. Abhandlungen des Reichsamtes für Bodenforschung, 204, 1–324.
Schindewolf, O.H. 1952. Korallen der Oberkarbon (Namur) des oberschlesischen Steinkohlen-Becken. Akademie der Wissenschaften und der Literatur, Abhandlungen der matematisch- naturwissenschaftlichen Klasse, 4, 143–227.
Sokolov, B.S. 1960. Permian corals of the southwestern part of the Omolon Massif (with special attention to plerophyllid Rugosa). Trudy Vsesoyuznogo Neftianogo Nauchno-Geologicheskogo Instituta (VNIGRI), 154, 38–77. [In Russian]
Soshkina, E.D., Dobroljubova, T.A. and Porfiriev, G.S. 1941. Permian Rugosa of the European part of the USSR. In: Likcharev, B.K. (Ed.), Palaeontology of the USSR, vol. 5, pt. 3, no. 1. Paleontologicheskiy Institut; Moskva, Leningrad. [In Russian]
Sowerby, J. 1814. The mineral conchology of Great Britain, vol. 1, pt. 13, 153–168. B. Meredith; London.
Stuckenberg, A.A. 1904. Corals and bryozoans from the lower division of the central Russian Carboniferous limestone. Trudy Geologicheskogo Komiteta, 14, I–IV + 1–109. [In Russian with German summary]
Vassilyuk, N.P. 1960. Lower Carboniferous corals from the Donets Basin. Akademia Nauk Ukrainskoi SSR. Trudy Instituta Geologicheskikh Nauk. Seria Stratigrafia i Paleontologia, 13, 1–179. [In Russian]
Verrill, A.E. 1865. Classification of polyps (Extract condensed from a synopsis of the polypi of the North Pacific Exploring Expedition, under captains Ringgold and Rogers, U.S.N.). Proceedings of the Essex Institute, 4, 145–149.
Wang, X.D., Sugiyama, T. and Zhang, F. 2004. Individual variation in a new solitary rugose coral Commutia exsoleta from the Lower Carboniferous of the Baoshan Block, Southwest China. Journal of Paleontology, 78, 77–83.
Weyer, D. 1972. Zur Morphologie der Rugosa (Pterocorallia). Geologie, 21, 710–737.
Weyer, D. 1973. Einige rugose Korallen aus der Erblochsgrauwacke (Unterdevon des Unterharzes). Zeitschrift für Geologische Wissenschaften, 1, 45–65.
Weyer, D. 1975. Korallen aus dem Obertournai der Insel Hiddensee. Zeitschrift für geologische Wissenschafen, 3, 927–949.
Weyer, D. 1977. Review of the rugose coral faunas of the Lower Namurian Ostrava Formation (Upper Silesian Coal Basin). In: Holub, V.M and Wagner, R.H. (Eds), Symposium on Carboniferous Stratigraphy, 459–468. Praha.
Weyer, D. 1994. Korallen im Untertournai-Profil von Drewer (Rheinische Schiefergebirge). Geologie und Paläontologie in Westfalen, 29, 177–221.
Weyer, D. and Ilina, T.G. 1979. Die Permischen Rugosa-Genera Pleramplexus und Pentamplexus. Zeitschrift für Geologische Wissenschaften, 11, 1315–1341.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, PL 61-680 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents descriptions and illustrations of Anthracoporella spectabilis Pia (Dasycladaceae) and Palaeoaplisina laminaeformis Krotov (Hydrozoa) from the Treskelodden Formation (Lower Permian, Sakmarian) of the Hornsund area (Treskelen, Urnetoppen), and Chaetetes arcticus sp. n. (Demospongiae) from the „Wordiekammen Limestone" (Pernio — Carboniferous) of the Isfjorden area of the southern and central part of Spitsbergen. A. spectabilis and P. laminaeformis common in the Hornsund area are also known from the northern Ural Mts. and Timan.

Go to article

Authors and Affiliations

Aleksander Nowiński

This page uses 'cookies'. Learn more