Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article provides calculations and feasibility study of solar power plants implementation for the states of New Jersey, New Mexico and Michigan. The average cost for grid power, average household kwh use per month and average cost for 6-kw system with 26% federal tax credit applied were taken into account. The approach outlined in this article proposes to take into account changes in the value of money, tariffs and period of service of solar power plant.
The conducted research shows that the construction of SPPs in the USA can be profitable in the conditions of constant growth in prices for electricity produced using traditional energy sources. However, with the stability of electricity prices, the use of solar energy is far from the most profitable investment.
It has been proven that there is a need to focus on the research of the latest energy storage and generation technologies in order to reduce the impact of the instability of renewable energy production on the stability of power grids in the future. Further development of SPPs can help increase their availability and competitiveness, which will contribute to the creation of a sustainable and green energy infrastructure. The development of technologies in this area will also lead to a decrease in installation prices and an increase in the efficiency of the panels.
The main limitation of solar power plants is the need for a large area for the installation of panels in order to achieve the level of industrial electricity production. Therefore, now the centralized production of electricity using the sun is possible only in areas that are unsuitable for life and economic activity.

Go to article

Authors and Affiliations

Volodymyr Mykhaylovych Mamalyga
1
ORCID: ORCID
Oleh Oleksandrovych Prytulenko
1
ORCID: ORCID

  1. Educational and Research Institute of Institute of Nuclear and Thermal Energy, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The implementation of a sustainable development concept that involves an improvement of resource use efficiency, whilst maximizing the utilization of locally available biomass resources, has contributed to an increased interest in the combined heat and power systems based on externally fired gas turbines. Since the high-temperature gas/gas heat exchangers intended to heat the turbine inlet air are the key components of such systems, intensified research on exchangers of this type has been observed over the last decade. This work presents the in-house calculation code developed to analyze the heat transfer between the hot-side and cold-side streams in the small-scale red-hot air furnace of a unique design. The performed calculations, based on the assumed thermal and flow operation parameters and technical specifications, allowed to determine the required heat exchange surface area of the furnace to achieve the target outlet conditions. The calculation code allows for determining the geometry of a furnace, including its overall dimensions, number of tubes, and their bent sections in the heat exchange parts. The study of the laboratory-scale furnace performance has demonstrated its good agreement with the simulation results, thereby proving the code a reliable tool in designing.
Go to article

Authors and Affiliations

Sylwia Polesek-Karczewska
1
Dariusz Kardaś
1
Izabela Wardach-Święcicka
1

  1. Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland

This page uses 'cookies'. Learn more