Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 75
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Power production is the largest source of emissions of anthropogenic carbon dioxide. The main fuels in Poland are solid fuels - hard coal and lignite. Their combustion produces large quantities of waste, primarily fly ash. The ashes from lignite, due to the chemical and phase composition, and thus their properties, have - so far - limited economic use. Among their possible applications is the use of mineral sequestration of carbon dioxide - this is the result of their relatively high content of active CaO and MgO, which can react with carbon dioxide in aqueous suspensions. The paper presents maximum theoretical capacity of CO2 bonding for examined fly ashes and the results of the research on absorption of CO2 by the ash-water suspensions from fly ash resulting from the combustion of lignite from Pątnów and Turów power plants. Calculated for the examined fly ashes maximum theoretical capacity of CO2 bonding amounted to 14% for the ashes from Pątnów power plant and 14.4% for the fly ashes from Turów power plant. Studies have shown that most CO2 - 8.15 g/100 g of ash, was absorbed by suspension with ashes from Turów power plant with a mass ratio of ash to water of at 0.8:1. In the case of ash from Pątnów power plant absorption was lower and amounted to a maximum - 8.7 g CO2/100 g ash. The largest increase CO2 absorption was observed in the first 30 minutes of carbonation in the suspensions of fly ash from Pątnów power plant and the first 15 minutes in suspensions of fly ash from Turów power plant. After this time, the absorption has increased slowly. An increase in temperature in the chamber system, confirming the occurrence of the process of carbonation and its endothermic character. The highest temperature - 44.8 C recorded in the suspension with ashes from Turów power plant, which has also the greatest absorption of CO2. The results confirm the usefulness of these ashes to sequester carbon dioxide.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
Marek Gawlicki
Radosław Pomykała
Download PDF Download RIS Download Bibtex

Abstract

CCS (Carbon Capture and Storage) technology is one of the methods that limit the release of carbon dioxide into the atmosphere. However, the high cost of capturing CO2 in this technology is a major obstacle to the implementation of this solution by power plants. The reduction of costs is expected primarily on the side of the capture and separation of CO2 from flue/ industrial gas. The article presents the financial performance of the most popular amine technology (MEA) against mesoporous material about MCM-41 structure obtained from fly ash, impregnated with polyethyleneimine (PEI), for CCS installations. The study was conducted for an investment comprising three key components that provide a full value chain in CCS validation (capture, transport and storage). The mineralogical studies and determination of the physicochemical properties of mesoporous material produced from waste materials such as fly ash allowed us to identify the best class sorbents of MCM-41, which can be used in CO2 capture technologies. Developing an innovative relationship not only allows 100% of CO2 to be removed but also reduces operating costs (OPEX), primarily including energy by 40% and multiple material costs relative to amine mixtures such as MEA.

Go to article

Authors and Affiliations

Renata Koneczna
Magdalena Wdowin
Rafał Panek
Łukasz Lelek
Robert Żmuda
Wojciech Franus
Download PDF Download RIS Download Bibtex

Abstract

In this article, the contribution of renewable energy sources (RES) to the worldwide electricity production was analyzed. The scale of development and the importance of RES in the global economy as well as the issues and challenges related to variability of these sources were studied. In addition, the chemical conversion of excess energy to renewable methanol has been presented. The European Union regulations and targets for the years 2020 and 2030 concerning greenhouse gases reduction were taken into consideration. These EU restrictions exact the further development of renewable energy sources, in particular, the improvement of their efficiency which is closely related to economics. Moreover, as a part of this work, energy storage were described as one of the ways to increase the competitiveness of renewable energy sources with respect to conventional energy. A method for the conversion of carbon dioxide separated from high-carbon industries with hydrogen obtained by the over-production of green energy were described. The use of methanol in the chemical industry and global market have been reviewed and thus an increasing demand was observed. Additionally, the application of renewable methanol as fuels, in pure form and after a conversion of methanol to dimethyl ether and fatty acid methyl esters has been discussed. Hence, the necessity of modifying car engines in order to use pure methanol and its combination with petrol also was analyzed.

Go to article

Authors and Affiliations

Szymon Dobras
Lucyna Więcław-Solny
Tadeusz Chwoła
Aleksander Krótki
Andrzej Wilk
Adam Tatarczuk
Download PDF Download RIS Download Bibtex

Abstract

The location, geological structure and characteristics of the Kamionki Anticline is presented in terms of possibility of underground CO2 storage. It is situated in the Płock Trough, in the SW part of the Płońsk Block, and represents a synsedimentary graben originated in the Early and Middle Jurassic. It has been explored by a semi-detailed reflection seismic survey and three deep boreholes (Kamionki 1, Kamionki 2 and Kamionki IG-3). Assuming that the anticline is conventionally outlined by a contour line of the top of the Lower Jurassic, its length is about 15 km, width is about 5 km and the area reaches approximately 75 km2. Geological, seismic and reservoir property data allow concluding that this structure is suitable for underground carbon dioxide storage. The primary reservoir level for underground CO2 storage is represented by Barremianmiddle Albian deposits of the Mogilno Formation with an average thickness of 170 metres, containing on the average 85% of sandstones, and showing porosity of about 20% and permeability above 100 mD up to 2000 mD. The sealing series is composed of Upper Cretaceous marls, limestones and chalk reaching the thickness of about 1000 metres. The secondary reservoir level is represented by upper Toarcian deposits of the Borucice Formation.

Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

Geological carbon dioxide storing should be carried out with the assumption that there are no leakages from the storage sites. However, regardless of whether the gas which is injected in leaks from the storage site or not, the carbon dioxide stored will influence the environment. In a tight storage site the carbon dioxide injected in will dissolve in the reservoir liquids (groundwater and oil) and react with the rocks of the storage formation. Dissolving CO2 in underground water will result in the change of its pH and chemism. The reactions with the rock matrix of the storage site will not only trigger changes in its mineralogical composition, but also in the petrophysical parameters, because of the precipitation and dissolution of minerals. A leakage of CO2 from its storage site can trigger off changes in the composition of soil air and groundwater, influence the development of plants, and in case of sudden and large leaks it will pose a threat for people and animals. Carbon dioxide can cause deterioration of the quality of drinking waters related to the rise in their mineralization (hardness) and the mobilization of heavymetals' cations. A higher content of this gas in soil leads to a greater acidity and negatively affects plants. A carbon dioxide concentration of ca. 20-30% is a critical value for plants above which they start to die. The influence of high concentrations of carbon dioxide on the human organism depends on the concentration of gas, exposure time and physiological factors. CO2 content in the air of up to 1.5% does not provoke any side effects in people. A concentration of over 3% has a number of negative effects, such as: higher respiratory rate, breathing difficulties, headaches, loss of consciousness. Concentrations higher than 30% lead to death after a few minutes. Underground microorganisms and fungi have a good tolerance to elevated and high concentrations of carbon dioxide. Among animals the best resistance is found in invertebrates, some rodents and birds.

Go to article

Authors and Affiliations

Barbara Uliasz-Misiak
Download PDF Download RIS Download Bibtex

Abstract

The article has presented the assumptions underlying the organization of emissions trading of greenhouse gases with a particular emphasis on CO2 emission allowances. Through the analysis of the literature, international activities were undertaken aimed at reducing greenhouse gas emissions into the atmosphere, starting from the First World Climate Conference organized in 1979. The origins and guidelines of the Kyoto Protocol were also given considerable attention. In addition to the description of the key assumptions of the Protocol and its main components, the characteristics of international trade in Kyoto units were also included. The mechanisms involved in international trade and the types of units traded in a detailed manner are described. In the next part of the article, emission trading systems operating in the world are characterized. In the second part of the paper special attention was paid to the conditionings of the European market, i.e. European Emissions Trading System – EU ETS. Historical events were presented that gave rise to the creation of the EU ETS. In the next steps, the types of units that are tradable were described. Furthermore, the trade commodity exchanges on which trade is conducted, the key factors determining the price of individual allowances are also indicated. In the last part of the article, relatively recent issues – the IED Directive and the BAT conclusions have been pointed out. Referring to the applicable regulations, the impact of their implementation on the situation of entities obliged to limit greenhouse gas emissions was analyzed. In the final phase, an attempt was made to assess the impact of IED and BAT to electricity prices.

Go to article

Authors and Affiliations

Dawid Ciężki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the location, geological structure and characteristics of the Wyszogród and Dzierżanowo anticlines in terms of potential underground storage of carbon dioxide. The Dzierżanowo and Wyszogród anticlines are two of the nine pre-selected structures for underground storage of carbon dioxide in Mesozoic deposits of the Płock Trough. They were detected by seismic profiles and deep boreholes. The Dzierżanowo Anticline is explored in more detail (five boreholes) than the Wyszogród Anticline (one borehole). Lower Cretaceous and Lower Jurassic aquifers have been proposed for CO2 storage in these areas. They have similar parameters: average thickness (144 mand 161 m; 140 mand 112 m, respectively), depth to the aquifer (200-300 m, lower for the Dzierżanowo Anticline), high porosity and permeability of reservoir rocks (several hundred mD and more), high capacity storage of CO2 (much higher for the Wyszogród Anticline) and large thickness of the overburden seal. In both cases, the sealing series require further, detailed investigation of their sealing properties. No faults are observed within the reservoir rocks and overburden seal in the Wyszogród Anticline. They occur in the deeper parts of the Zechstein-Mesozoic succession up to the Lower Cretaceous in the Dzierżanowo Anticline. Due to its degree of exploration and the depth to the aquifer, and similar properties of the reservoir rocks and the sealing caprock, the Dzierżanowo structure seems more favourable for the underground storage of carbon dioxide. The Wyszogród and Dzierżanowo structures may be of interest to several large CO2 emitters in the region: Vettenfall Heat Poland SA - (Siekierki and Żerań, Warsaw) and the Dalkia Łódź ZEC SA, located at a distance of up to 100 kilometres.
Go to article

Authors and Affiliations

Sylwester Marek
Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to identify thoroughly the geological structure of the Choszczno Anticline for potential CO2 storage. The paper presents the interpretation of seismic materials for a selected seismic profile reprocessed into a section of reflection coefficients characterized by increased recording resolution as compared to the wave image. Particular attention was paid to the geological complexes associated with the Jurassic reservoir formations suitable for carbon dioxide storage within the anticline. The correlation of the identified layers reflects the lithology and structure of the rock series. It allows determination of the thicknesses of the series and changes within them, and enables linking the individual layers with the lithologic units, based on geological data. The study refers to the whole Zechstein-Mesozoic succession of the Choszczno Anticline, with special emphasis on these series, in which there are potential reservoir formations for CO2 storage. The interpretation has significantly expanded the amount of data provided in standard seismic documentations. While assessing the suitability of the formations for CO2 storage, special attention should be paid to the tectonic disturbances within the Komorowo Formation, especially in the top part of the Choszczno structure. The Reed Sandstone bed is more continuous in this respect. The obtained results seem to suggest wider application of reprocessing of seismic materials into effective reflection coefficients to study the geological structure, also for other structures.

Go to article

Authors and Affiliations

Lidia Dziewińska
Radosław Tarkowski
Download PDF Download RIS Download Bibtex

Abstract

The article describes the testing of four selected samples of limestone originating from four commercially exploited deposits. The tests of sorbents included a physicochemical analysis and calcination in different atmospheres. The main aim of the tests was to determine the possibilities for using limestone during combustion in oxygen-enriched atmospheres. Tests in a synthetic flue gas composition make it possible to assess the possibility of CaCO3 decomposition in atmospheres with an increased CO2 concentration.

Go to article

Authors and Affiliations

Angelika Kochel
Aleksandra Cieplińska
Arkadiusz Szymanek
Download PDF Download RIS Download Bibtex

Abstract

Paper presents the results of numerical modelling of a rectangular tube filled with a mixture of air and CO2 by means of the induced standing wave. Assumed frequency inducing the acoustic waves corresponds to the frequency of the thermoacoustic engine. In order to reduce the computational time the engine has been replaced by the mechanical system consisting of a piston. This paper includes the results of model studies of an acoustic tube filled with a mixture of air and CO2 in which a standing wave was induced.

Go to article

Authors and Affiliations

Sebastian Rulik
Leszek Remiorz
Sławomir Dykas
Download PDF Download RIS Download Bibtex

Abstract

This article aims at presenting research on the sorption of carbon dioxide on shales, which will allow to estimate the possibility of CO2 injection into gas shales. It has been established that the adsorption of carbon dioxide for a given sample of sorbent is always greater than that of methane. Moreover, carbon dioxide is the preferred gas if adsorption takes place in the presence of both gases. In this study CO2 sorption experiments were performed on high pressure setup and experimental data were fitted into the Ambrose four components models in order to calculate the total gas capacity of shales as potential CO2 reservoirs. Other data necessary for the calculation have been identified: total organic content, porosity, temperature and moisture content. It was noticed that clay minerals also have an impact on the sorption capacity as the sample with lowest TOC has the highest total clay mineral content and its sorption capacity slightly exceeds the one with higher TOC and lower clay content. There is a positive relationship between the total content of organic matter and the stored volume, and the porosity of the material and the stored volume.
Go to article

Bibliography

[1] A. Szurlej, P. Janusz, Natural gas economy in the United States and European markets. Gospodarka Surowcami Mineralnymi (Mineral Resources Management) 29 (4), 77-94 (2013). DOI: https://doi.org/10.2478/gospo-2013-0043
[2] B. Dudley, BP Statistical Review of World Energy 4 (2019).
[3] J. Siemek, M. Kaliski, S. Rychlicki, P. Janusz, S. Sikora, A. Szurlej, Wpływ shale gas na rynek gazu ziemnego w Polsce. Rynek Energii 5, 118-124 (2011).
[4] K . Król, A. Dynowski, Eksploatacja gazu ziemnego z formacji łupkowych w Polsce – nadzieje i fakty (komunikat). Bezp. Pr. Ochr. Śr. w Gór. 10 (2015).
[5] M. Iijima, T. Nagayasu, T. Kamijyo, S. Nakatani, MHI’s Energy Efficient Flue Gas CO2 Capture Technology and Large Scale CCS Demonstration Test at Coal-fired Power Plants in USA. Mitsubishi Heavy Industries Technical Review 49 (1), 37-43 (2012).
[6] R . Khosrokhavar, Mechanisms for CO2 sequestration in geological formations and enhanced gas recovery. Springer Theses (2016). DOI: https://doi.org/10.4233/uuid:a27f5c1d-5fd2-4b1e-b757-8839c0c4726c
[7] D . Liu, Y. Li, S. Yang, R.K. Agarwal, CO2 sequestration with enhanced shale gas recovery. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 43 (24) 1-11 (2019). DOI: https://doi.org/10.1080/15567036.2019.1587069
[8] R . Heller, M. Zoback, Adsorption of methane and carbon dioxide on gas shale and pure mineral samples. Journal of Unconventional Oil and Gas Resources 8, 14-24 (2014). DOI: https://doi.org/10.1016/j.juogr.2014.06.001
[9] J.A. Cecilia, C. García‐Sancho, E. Vilarrasa‐García, J. Jiménez‐Jiménez, E. Rodriguez‐Castellón, Synthesis, Characterization, Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 18, 1085-1104 (2018). DOI: https://doi.org/10.1002/tcr.201700107
[10] O.P. Ortiz Cancino, D. Peredo Mancilla, M. Pozo, E. Pérez, D. Bessieres, Effect of Organic Matter and Thermal Maturity on Methane Adsorption Capacity on Shales from the Middle Magdalena Valley Basin in Colombia. Energy Fuels 31, 11698-11709 (2017). DOI: https://doi.org/10.1021/acs.energyfuels.7b01849
[11] S. Zhou, H. Xue, Y. Ning, W. Guo, Q. Zhang, Experimental study of supercritical methane adsorption in Longmaxi shale: Insights into the density of adsorbed methane. Fuel 211, 140-148 (2018). DOI: https://doi.org/10.1016/j.fuel.2017.09.065
[12] H . Bi, Z. Jiang, J. Li, P. Li, L. Chen, Q. Pan, Y. Wu, The Ono-Kondo model and an experimental study on supercritical adsorption of shale gas: A case study on Longmaxi shale in southeastern Chongqing, China. J. Nat. Gas Sci. Eng. 35, 114-121 (2016). DOI: https://doi.org/10.1016/j.jngse.2016.08.047
[13] M. Gasparik, P. Bertier, Y. Gensterblum, A. Ghanizadeh, B.M. Krooss, R. Littke, Geological controls on the methane storage capacity in organic-rich shales. Int. J. Coal Geol., Special issue: Adsorption and fluid transport phenomena in gas shales and their effects on production and storage 123, 34-51 (2014). DOI: https://doi.org/10.1016/j.coal.2013.06.010
[14] X. Luo, S. Wang, Z. Wang, Z. Jing, M. Lv, Z. Zhai, T. Han, Adsorption of methane, carbon dioxide and their binary mixtures on Jurassic shale from the Qaidam Basin in China. Int. J. Coal Geol. 150, 210-223 (2015). DOI: https://doi.org/10.1016/j.coal.2015.09.004
[15] L . Wang, Q. Yu, The effect of moisture on the methane adsorption capacity of shales: A study case in the eastern Qaidam Basin in China. J. Hydrol. 542, 487-505 (2016). DOI: https://doi.org/10.1016/j.jhydrol.2016.09.018
[16] S.M. Kang, E. Fathi, R.J. Ambrose, I.Y. Akkutlu, R.F. Sigal, Carbon Dioxide Storage Capacity of Organic-Rich Shales. SPE J. 16, 842-855 (2011). DOI: https://doi.org/10.2118/134583-PA
[17] D .L. Gautier, J.K. Pitman, R.R. Charpentier, T. Cook, T.R. Klett, C.J. Schenk, Potential for Technically Recoverable Unconventional Gas and Oil Resources in the Polish-Ukrainian Foredeep. USGS Fact Sheet, 2012-3102 (2012).
[18] R . McCarthy, V. Arp, A New Wide Range Equation of State for Helium. Advances in Cryogenic Engineering 35, 1465-1475 (1990).
[19] R . Span, W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data 25 (6), 1509-1596 (1996). DOI: https://doi.org/10.1063/1.555991
[20] U . Setzmann, W. Wagner, A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa. Journal of Physical and Chemical Reference Data 20, 1061-1155 (1991). DOI: https://doi.org/10.1063/1.555898
[21] M. Lutynski, M. A. Gonzalez Gonzalez, Characteristics of carbon dioxide sorption in coal and gas shale – The effect of particle size. Journal of Natural Gas Science and Engineering 28, 558-565. DOI: https://doi.org/10.1016/j.jngse.2015.12.037
[22] R . Aguilera, Shale gas reservoirs: Theoretical, practical and research issues. Petroleum Research 1 (1), 10-26 (2016). DOI: https://doi.org/10.1016/S2096-2495(17)30027-3
[23] H . Belyadi, E. Fathi, F. Belyadi, Hydraulic fracturing in unconventional reservoirs: theories, operations, and economic analysis. Gulf Professional Publishing (2016).
[24] K . Sepehrnoori, Y. Wei, Shale Gas and Tight Oil Reservoir Simulation. Elsevier (2018). DOI: https://doi.org/10.1016/ C2017-0-00263-X
[25] R .J. Ambrose, R.C Hartman, M. Diaz-Campos, I.Y. Akkutlu, C.H. Sondergeld, New Pore-scale Considerations for Shale Gas in Place Calculations. Presented at the SPE Unconventional Gas Conference, Society of Petroleum Engineers (2010). DOI: https://doi.org/10.2118/131772-MS
[26] R .J. Ambrose, R.C. Hartman, M. Diaz Campos, I.Y. Akkutlu, C.H. Sondergeld, Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. Spe Journal 17 (01), 219-229 (2012). DOI: https://doi.org/10.2118/131772-PA
[27] P. Such, Co to właściwie znaczy porowatość skał łupkowych. Nafta-Gaz LXX (7), 411-415 (2014).
Go to article

Authors and Affiliations

Patrycja Waszczuk-Zellner
1
ORCID: ORCID
Marcin Lutyński
2
ORCID: ORCID
Aleksandra Koteras
3
ORCID: ORCID

  1. LNPC Patrycja Waszczuk, Pszczyna, Poland
  2. Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  3. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The geometry and operating parameters have an important influence on the performance of ejectors. The improvement of the refrigeration cycle performance and the design of the ejectors for the compression energy recovery requires a detailed analysis of the internal ejector working characteristics and geometry. To this aim, an experimental investigation of an ejector refrigeration system is conducted to determine the effect of the most important ejector dimensions on ejector working characteristics and system performance. Different dimensions of ejector components are tested. The influence of the ejector’s geometrical parameters on the system performance was analysed. The experiments with respect to the variation of ejector geometry such as the motive nozzle throat diameter, the mixing chamber diameter and the distance between the motive nozzle and diffuser were carried out. There exist optimum design parameters in each test. The experimental results show that the performance (entrainment ratio and a compression ratio of the ejector) increases significantly with the position between the primary nozzle and the mixing chamber. A maximum entrainment ratio of 57.3% and a compression ratio of 1.26 were recorded for the different parameters studied. The results obtained are consistent with experimental results found in the literature.
Go to article

Bibliography

[1] Elbel S., Hrnjak P.: Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. Int. J. Refrig. 31(2008), 3, 411–422.
[2] Liu J.P., Chen J.P., Chen Z.J.: Thermodynamic analysis on transcritical R744 vapor compression/ejection hybrid refrigeration cycle. In: Prelim. Proc. 5th IIR Gustav Lorentzen Conf. on Natural Working Fluids, Guangzhou 2002, 184–188.
[3] Jeong J., Saito K., Kawai S., Yoshikawa C., Hattori K.: Efficiency enhancement of vapor compression refrigerator using natural working fluids with two-phase flow ejector. In: Proc. 6th IIR-Gustav Lorentzen Conf. on Natural Working Fluids at Glasgow 2004, CD-ROM.
[4] Jian-qiang Deng, Pei-xue Jiang, Tao Lu, Wei Lu: Particular characteristics of transcritical CO2 refrigeration cycle with an ejector. Appl. Therm. Eng. 27(2007), 381–388.
[5] Da Qing Li, Groll E.A.: Transcritical CO2 refrigeration cycle with ejectorexpansion device. Int. J. Refrig. 28(2005), 5, 766–773.
[6] Ksayer E.B., Clodic D.: Enhancement of CO2 refrigeration cycle using an ejector: 1D analysis. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue 2026, Purdue Univ. R058.2006.
[7] Bartosiewicz Y., Aidoun Z., Mercadier Y.: Numerical assessment of ejector operation for refrigeration applications based on CFD. Appl. Therm. Eng. 26(2006), 5-6, 604–612.
[8] Petrenko V.O., Huang B.J., Ierin V.O.: Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle. Int. J. Refrig. 34(2011), 7, 1649–1656.
[9] Martel S.: Étude numérique d’un écoulement diphasique critique dans un convergent- divergent. PhD thesis, Université de Sherbrooke, Sherbrooke 2013 (in French).
[10] Marynowski T.: Étude expérimentale et numérique d’écoulements supersoniques en éjecteur avec et sans condensation. PhD thesis, Université de Sherbrooke, Sherbrooke 2007 (in French).
[11] Scott D., Aidoun Z., Ouzzane M.: An experimental investigation of an ejector for validating numerical simulations. Int. J. Refrig. 34(2011), 7, 1717–1723.
[12] Chen H., Zhu J., Ge J., Lu W., Zheng L.: A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position. Energy 208(2020), 118302.
[13] Mondal S., De D.: Performance assessment of a low-grade heat driven dual ejector vapor compression refrigeration cycle. Appl. Therm. Eng. 179(2020), 115782.
[14] Ringstad K.E., Allouche Y., Gullo P., Banasiak K., Hafner A.: A detailed review on CO2 two-phase ejector flow modeling. Thermal Sci. Eng. Progress 20(2020), 100647.
[15] Yu B., Yang J., Wang D., Shi J., Chen J.: An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle. Energy 189(2019), 116147.
[16] Chen W., Liu M., Chong D., Yan J., Little A.B., Bartosiewicz Y.A.: 1D model to predict ejector performance at critical and sub-critical operational regimes. Int. J. Refrig. 36(2013), 6, 1750–1761.
[17] Banasiak K., Hafner A., Andresen T.: Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. Int. J. Refrig. 35(2012), 6, 1617–1625.
[18] Domanski P.A.: Theoretical Evaluation of the Vapor Compression Cycle With a Liquid-Line/Suction-Line Heat Exchanger, Economizer, and Ejector. National Institute of Standards and Technology, NISTIR-5606, 1995.
[19] Elbel S.W., Hrnjak P.S.: Effect of internal heat exchanger on performance of transcritical CO2 systems with ejector. In: Proc. 10th Int. Refrigeration and Air Conditioning Conf. Purdue 2004, R166, West Lafayette 2004.
[20] Kornhauser A.A.: The use of an ejector as a refrigerant expander. In: Proc. USNC/IIR-Purdue Refrigeration Conf., Purdue Univ.,West Lafayette 1990, 10–19.
[21] Lawrence N., Elbel S.: Experimental and analytical investigation of automotive ejector air-conditioning cycles using low-pressure refrigerants. In: Proc. Int. Refrigeration and Air Conditioning Conf., Purdue, July 16-19, 2012, 1169, 1–10.
[22] Liu F., Li Y., Groll E.A.: Performance enhancement of CO2 air conditioner with a controllable ejector. Int. J. Refrig. 35(2012), 6, 1604–1616.
[23] Domanski P.A.: Minimizing throttling losses in the refrigeration cycle. In: Proc. 19th Int. Congress of Refrigeration, Hague 1995, 766–773.
[24] Varga S., Oliveira A., Diaconu B.: Influence of geometrical factors on steam ejector performance – A numerical assessment. Int. J. Refrig. 32(2009), 7, 1694– 1701.
[25] Sarkar J.: Optimization of ejector-expansion transcritical CO2 heat pump cycle. Energy 33(2008), 9, 1399–1406.
[26] Elbel S.: Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. Int. J. Refrig. 34(2011), 7, 1545–1561.
[27] Lee J.S., Kim M.S., Kim M.S.: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[28] Lucas C., Koehler J.: Experimental investigation of the COP improvement of a refrigeration cycle by use of an ejector. Int. J. Refrig. 35(2012), 6, 1595–1603.
[29] Nakagawa M., Marasigan A.R., Matsukawa T., Kurashina A.: Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO2 refrigerationcycle with and without heat exchanger. Int. J. Refrig. 34(2011), 7, 1604–1613.
[30] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis on the effect of internal heat exchanger in transcritical CO2 refrigeration cycle with twophase ejector. Int. J. Refrig. 34(2011), 7, 1577–1586.
[31] Nakagawa M., Marasigan A.R., Matsukawa T.: Experimental analysis of two phase ejector system with varying mixing cross-sectional area using natural refrigerant CO2. Int. J. Air-Cond. Refrig. 18(2010), 4, 297–307.
[32] Liu F., Groll E.A., Li D.: Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles. Energy 45(2012), 1, 829–839.
[33] Liu F., Groll E.A.: Analysis of a two-phase flow ejector for transcritical CO2 cycle. Int. Refrig. Air Cond. Conf., Purdue, July 14–17, 2008, 924.
[34] Liu F., Groll E.A.: Study of ejector efficiencies in refrigeration cycles. Appl. Therm. Eng. 52(2013), 2, 360–370.
[35] Lawrence N., Elbel S.: Experimental investigation on the effect of evaporator design and application of work recovery on the performance of two-phase ejector liquid recirculation cycles with R410A. Appl. Therm. Eng. 100(2016), 398–411.
[36] Van Nguyen V., Varga S., Soares J., Dvorak V., Oliveira A.C.: Applying a variable geometry ejector in a solar ejector refrigeration system. Int. J. Refrig. 113(2020), 187–195.
[37] Pereira P.R., Varga S., Soares J., Oliveira A.C., Lopes A.M., de Almeida F.G., Carneiro J.F.: Experimental results with a variable geometry ejector using R600a as working fluid. Int. J. Refrig. 46(2014), 77–85.
[38] Liu F., Groll E.: A preliminary study of the performance enhancement of a dualmode heat pump using an ejector. In: Proc. 25th IIR Int. Cong. of Refrigeration, ICR2015, Yokohama, Aug. 16-22, 2015, 16–22.
[39] Eames I.W., Wu S., Worall M., Aphornratana S.: An experimental investigation of steam ejectors for application in jet-pump refrigerators powered by low-grade heat. P. I. Mech. Eng. A-J Pow. A 213(1999), 5, 351–361. [40] Lee J.S., Kim M. Se, Kim M. Soo: Experimental study on the improvement of CO2 air conditioning system performance using an ejector. Int. J. Refrig. 34(2011), 7, 1614–1625.
[41] Bouzrara A.: Etude expérimentale des éjecteurs- application à la récupération de l’énergie de détente des machines frigorifiques au CO2. PhD thesis, INSA Lyon (CETHIL)-ENI Tunis 2018 (in French).
Go to article

Authors and Affiliations

Philippe Haberschill
1
Ezzeddine Nehdi
2
Lakdar Kairouani
2
Mouna Abouda Elakhdar
2

  1. University of Lyon, CNRS, INSA-Lyon, CETHIL UMR5008, F-69621, Villeurbanne, France
  2. Research Lab Energetic and Environment, National Engineering School of Tunis, Tunis El Manar University, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

Using the Konary anticlinal structure in central Poland as an example, a geological model has been built of the Lower Jurassic reservoir horizon, and CO2 injection was simulated using 50 various locations of the injection well. The carbon dioxide storage dynamic capacity of the structure has been determined for the well locations considered and maps of CO2 storage capacity were drawn, accounting and not accounting for cap rock capillary pressure. Though crucial for preserving the tightness of cap rocks, capillary pressure is not always taken into account in CO2 injection modeling. It is an important factor in shaping the dynamic capacity and safety of carbon dioxide underground storage. When its acceptable value is exceeded, water is expelled from capillary pores of the caprock, making it permeable for gas and thus may resulting in gas leakage. Additional simulations have been performed to determine the influence of a fault adjacent to the structure on the carbon dioxide storage capacity.

The simulation of CO2 injection into the Konary structure has shown that taking capillary pressure at the summit of the structure into account resulted in reducing the dynamic capacity by about 60%. The greatest dynamic capacity of CO2 storage was obtained locating the injection well far away from the structure’s summit. A fault adjacent to the structure did not markedly increase the CO2 storage capacity. A constructed map of CO2 dynamic storage capacity may be a useful tool for the optimal location of injection wells, thus contributing to the better economy of the enterprise.

Go to article

Authors and Affiliations

Katarzyna Luboń
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this work, a new dual-evaporator CO2transcritical refrigeration cycle with two ejectors is proposed. In this new system, we proposed to recover the lost energy of condensation coming off the gas cooler and operate the refrigeration cycle ejector free and enhance the system performance and obtain dual-temperature refrigeration simultaneously. The effects of some key parameters on the thermodynamic performance of the modified cycle are theoretically investigated based on energetic and exergetic analysis. The simulation results for the modified cycle indicate more effective system performance improvement than the single ejector in the CO2vapor compression cycle using ejector as an expander ranging up to 46%. The exergetic analysis for this system is made. The performance characteristics of the proposed cycle show its promise in dual-evaporator refrigeration system.

Go to article

Authors and Affiliations

Ezzaalouni Yathreb Abdellaoui
Lakdar Kairouani Kairouani
Download PDF Download RIS Download Bibtex

Abstract

Szargut proposed the algorithm for determination of the influence of irreversibility of components of thermal process on the emission of CO2 [6]. In the presented paper, basing on Szargut's proposal, the example of analysis of influence of operational parameters of coal fired power plant on the local increase of CO2 emission is presented. The influence of operational parameters on the local exergy losses appearing in components of investigated power plant are simulating making use of the semi-empirical model of power plant.

Go to article

Authors and Affiliations

Wojciech Stanek
Michał Budnik
Download PDF Download RIS Download Bibtex

Abstract

An analysis of energy efficiency for transcritical compression unit with CO2 (R744) as the refrigerant has been carried out using empirical operating characteristics for the two-phase ejector. The first stage of the refrigerant compression is carried out in the ejector. The criterion adopted for the estimation of energy efficiency for the cycle is the coefficient of performance COP. The analysis is performed for the heat pump and refrigeration systems. The results of COP for the systems with the ejector has been compared with the COPL values for the single stage Linde cycle.

Go to article

Authors and Affiliations

Joachim Kozioł
Wiesław Gazda
Łukasz Wilżyński
Keywords CO2 capture MEA AMP PZ
Download PDF Download RIS Download Bibtex

Abstract

This paper provides a discussion concerning results of CO2 removal from a gas mixture by the application of aqueous solutions of ethanoloamine (MEA) and 2-amino-2-methyl-1-propanol (AMP) promoted with piperazine (PZ). The studies were conducted using a process development unit. Research of such a scale provides far more reliable representation of the actual industrial process than modelling and laboratory tests. The studies comprised comparative analyses entailing identical energy supplied to a reboiler as well as tests conducted at similar process efficiencies for both solvents. The results thus obtained imply that using AMP/PZ enables reduction of the solvent heat duty. Moreover, while using AMP/PZ temperature decrease was also observed in the columns.

Go to article

Authors and Affiliations

Adam Tatarczuk
Dariusz Śpiewak
Lucyna Więcław-Solny
Andrzej Wilk
Aleksander Krótki
Tomasz Spietz
Marcin Stec
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a parametric analysis of a hightemperature nuclear-reactor cogeneration system. The aim was to investigate the power efficiency of the system generating heat for a high-temperature technological process and electricity in a Brayton cycle and additionally in organic Rankine cycles using R236ea and R1234ze as working fluids. The results of the analyses indicate that it is possible to combine a 100 MW high-temperature gas-cooled nuclear reactor with a technological process with the demand for heat ranging from 5 to 25 MW, where the required temperature of the process heat carrier is at the level of 650°C. Calculations were performed for various pressures of R236ea at the turbine inlet. The cogeneration system maximum power efficiency in the analysed cases ranges from ~35.5% to ~45.7% and the maximum share of the organic Rankine cycle systems in electric power totals from ~26.9% to ~30.8%. If such a system is used to produce electricity instead of conventional plants, carbon dioxide emissions can be reduced by about 216.03–147.42 kt/year depending on the demand for process heat, including the reduction achieved in the organic Rankine cycle systems by about 58.01–45.39 kt/year (in Poland).
Go to article

Authors and Affiliations

Julian Jędrzejewski
1
Małgorzata Hanuszkiewicz-Drapała
2

  1. Antea Polska S.A., Duleby 5, 40-833 Katowice, Poland
  2. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the concepts of the ventilation rate control in buildings with dense and unpredictable occupancies is based on the CO2 measurements. There are many limitations regarding the validity of CO2 measurement inputs as suitable to the ventilation rate control. Verifying research has been conducted in an air-conditioned auditorium, in the real conditions at altered ventilation air thermal parameters and variable occupancy. The CO2 and the number concentrations of the fine and coarse aerosol particles(> 0.3 μm) and bioaerosol particles (bacteria and staphylococci) as well as the indoor air thermal parameters were measured in the individual sectors of the occupied area. The sensory assessments and instrumental determinations of the acceptability of indoor air quality (ACC) were also performed. The ventilation control strategy based, apart from the CO2 measurements, on the continuous monitoring of the perceived air quality (PAQ) in the auditorium sectors has been suggested. The PAQ monitoring could be accomplished by aerosol concentration measurements and the ACC instrumental determinations. This strategy should ensure a desired PAQ in sectors which benefit the occupants' comfort, health and productivity as well as energy savings not only in the case of its implementation in the considered auditorium.
Go to article

Authors and Affiliations

Bernard Połednik
Marzenna Dudzińska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of laboratory-scale tests of Polish hard coal steam gasification process combined with CO2 capture by absorption on CaO in a single step. Polish coal mine Piast was selected as a coal samples supplier based on the coal resources, quality, price and reactivity which makes it a potential supplier for a future full-scale gasification system. Steam gasification tests were conducted in a vertical fixed bed reactor at the temperature range of948-I I 73K in three series: with addition of CaO layered on a coal sample (II), mixed with a coal sample (111) and without adding CaO (I). The CaO increased both the hydrogen yield and content in gaseous products mixture in comparison with series l. As expected, mixing of CaO with coal sample improved the effects in terms of hydrogen yield and concentration in outlet gas when compared with CaO layered on a coal sample. An effective CO2 absorption was observed in tests with CaO mixed with a coal sample and at relatively low temperatures. At higher temperatures a reaction resulting in CO2 concentration increase in the produced gas mixture was observed.
Go to article

Authors and Affiliations

Adam Smoliński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Fly ashes from the combustion of lignite coal are suitable materials for the creation of suspensions in which CO2 is bound by mineral carbonation. Considering their limited economic uses, mineral sequestration, as a stage of the CCS technology in lignite coal power plants, can be a way of recycling them. Mineral sequestration of CO2 was researched using fly ashes from the combustion of lignite coal in the Pątnów power plant, distinguished by a high content of CaO and free CaO. Research into phase composition confirmed the process of carbonation of the whole calcium hydroxide contained in pure suspensions. The degree of CO2 binding was determined on the basis of thermogravimetric analysis. A rise in the content of CaCO3 was found in the suspensions after subjecting them to the effects of carbon dioxide. Following carbonation the pH is lowered. A reduction in the leaching of all pollutants was discovered in the studied ashes. The results obtained were compared to earlier research of ashes from the same power plant but with a different chemical composition. Research confirmed that water suspensions of ashes from the combustion of lignite coal in the Pątnów power plant are distinguished for a high degree of carbonation.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of thermodynamic analysis of the supercritical coal-fired power plant with gross electrical output of 900 MW and a pulverized coal boiler. This unit is integrated with the absorption-based CO2separation installation. The heat required for carrying out the desorption process, is supplied by the system with the gas turbine. Analyses were performed for two variants of the system. In the first case, in addition to the gas turbine there is an evaporator powered by exhaust gases from the gas turbine expander. The second expanded variant assumes the application of gas turbine combined cycle with heat recovery steam generator and backpressure steam turbine. The way of determining the efficiency of electricity generation and other defined indicators to assess the energy performance of the test block was showed. The size of the gas turbine system was chosen because of the need for heat for the desorption unit, taking the value of the heat demand 4 MJ/kg CO2. The analysis results obtained for the both variants of the installation with integrated CO2separation plant were compared with the results of the analysis of the block where the separation is not conducted.
Go to article

Authors and Affiliations

Janusz Kotowicz
Łukasz Bartela
Mikosz Dorota
Download PDF Download RIS Download Bibtex

Abstract

In the study an accurate energy and economic analysis of the carbon capture installation was carried out. Chemical absorption with the use of monoethanolamine (MEA) and ammonia was adopted as the technology of carbon dioxide (CO2) capture from flue gases. The energy analysis was performed using a commercial software package to analyze the chemical processes. In the case of MEA, the demand for regeneration heat was about 3.5 MJ/kg of CO2, whereas for ammonia it totalled 2 MJ/kg CO2. The economic analysis was based on the net present value (NPV) method. The limit price for CO2emissions allowances at which the investment project becomes profitable (NPV = 0) was more than 160 PLN/Mg for MEA and less than 150 PLN/Mg for ammonia. A sensitivity analysis was also carried out to determine the limit price of CO2emissions allowances depending on electricity generation costs at different values of investment expenditures.
Go to article

Authors and Affiliations

Krzysztof Bochon
Tadeusz Chmielniak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results and analysis of biomass processing in order to provide the conditions for the most profitable use of the biomass in modern and efficient power generation systems with particular attention put on the decrease of the emission of carbon dioxide (CO2) and no need to develop carbon capture and storage plants. The promising concept of CO2 storage via the production of biochar and the advantages of its application as a promising carbon sink is also presented and the results are supported by authors’ own experimental data. The idea enables the production of electricity, as well as (optionally) heat and cold from the thermal treatment of biomass with simultaneous storage of the CO2 in a stable and environmentally-friendly way. The key part of the process is run in a specially-designed reactor where the biomass is heated up in the absence of oxygen. The evolved volatile matter is used to produce heat/cold and electricity while the remaining solid product (almost completely dry residue) is sequestrated in soil. The results indicate that in order to reduce the emission of CO2 the biomass should rather be ‘cut and char’ than just ‘cut and burn’, particularly that the charred biomass may also become a significant source of nutrients for the plants after sequestration in soil.

Go to article

Authors and Affiliations

Rafał Kobyłecki
Mariola Ścisłowska
Zbigniew Bis

This page uses 'cookies'. Learn more