Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper outlines issues associated with gas-shielded braze welding of CU-ETP copper with austenitic steel X5CrNi18-10 (1.4301) using a consumable electrode. The possibilities for producing joints of this type using innovative low-energy welding methods are discussed. The paper provides an overview of the results of metallographic and mechanical (static shear test, microhardness) tests for braze welded joints made on an automated station using the Cold Metal Transfer (CMT) method. Significant differences in the structure and mechanical properties are indicated, resulting from the joint configuration and the type of shielding gas (argon, helium).

Go to article

Authors and Affiliations

T. Wojdat
ORCID: ORCID
P. Kustroń
A. Margielewska
M. Stachowicz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to identify bacterial pathogens in milk samples from dairy cows with subclinical and clinical mastitis as well as to assess the concentrations of oxidant-antioxidant parameters [malondialdehyde (MDA), reduced glutathione (GSH), and total GSH levels] in both blood and milk samples. From a total of 200 dairy cows in 8 farms, 800 quarter milk samples obtained from each udder were tested in the laboratory for the presence of udder pathogens. Cultivated bacteria causing intramammary infection from milk samples were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF). In addition, from tested animals 60 cows were selected includıng 20 healthy cows that were CMT negative, 20 cows with subclinical mastitis (SM), and 20 cows with clinical mastitis (CM) for detection of MDA, GSH, and total GSH levels in blood and milk samples. Three hundred and eighty (47.5%; 380/800), 300 (37.5%; 300/800), and 120 (15%; 120/800) of milk samples, respectively were CMT positive or SM and CM, and those positives were cows from different farms. We observed that 87.4% (332/380), 25.3% (76/300), and 34.2% (41/120) of cows with CMT positive, CMT negative, and CM had bacterial growth. The most predominantly identified bacteria were Staphylococcus chromogenes (18.7%) obtained mainly from SM and Staphylococcus aureus (16.7%) as the most frequent cause of CM. According to our results, dairy cows with CM had the highest MDA levels, the lowest GSH, and total GSH levels in both blood and milk samples however, high MDA levels and low GSH levels in milk samples with SM were observed. Based on our results, lipid oxidant MDA and antioxidant GSH could be excellent biomarkers of cow’s milk for developing inflammation of the mammary gland. In addition, there was no link between nutrition and MDA and GSH levels.
Go to article

Bibliography


Abdel-Hamied E, Mahmoud MM (2020) Antioxidants profile, oxidative stress status, leukogram and selected biochemical indicators in dairy cows affected with mastitis. J Anim Health Product 8: 183-188.
Amer S, Gálvez FL, Fukuda Y, Tada C, Jimenez, IL, Valle WF, Nakai Y (2018) Prevalence and etiology of mastitis in dairy cattle in El Oro Province, Ecuador. J Vet Med Sci 80: 861-868.
Andrei S, Matei S, Fit N, Cernea C, Ciupe S, Bogdan S, Groza IS (2011) Glutathione peroxidase activity and its relationship with somatic cell count, number of colony forming units and protein content in subclinical mastitis cow’s milk. Romanian Biotechnological Letters 16: 6209-6217.
Bexiga R, Rato MG, Lemsaddek A, Semedo-Lemsaddek T, Carneiro C, Pereira H, Mellor DJ, Ellis KA, Vilela CL (2014) Dynamics of bovine intramammary infections due to coagulase-negative staphylococci on four farms. J Dairy Res 81: 208-214.
Cameron M, Perry J, Middleton JR, Chaffer M, Lewis J, Keefe GP (2018) Short communication: Evaluation of MALDI-TOF mass spectrometry and a custom reference spectra expanded database for the identification of bovine-associated coagulase-negative staphylococci. J Dairy Sci 101: 590-595.
Carvalho-Sombra TC, Fernandes DD, Bezerra BM, Nunes-Pinheiro DC (2021) Systemic inflammatory biomarkers and somatic cell count in dairy cows with subclinical mastitis. Vet Anim Sci 11: 100165.
Castillo C, Hernández J, Valverde I, Pereira V, Sotillo J, López Alonso ML, Benedito JL (2006) Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res Vet Sci 80: 133-139.
Chakraborty S, Dhama K, Tiwari R, Yatoo MI, Khurana SK, Khandia R (2019) Technological interventions and advances in the diagnosis of intramammary infections in animals with emphasis on bovine population – a review. Vet Q 39: 76-94.
Celi P (2011) Biomarkers of oxidative stress in ruminant medicine. Immunopharmacol Immunotoxicol 33: 233-240.
Condas LA, De Buck J, Nobrega DB, Carson DA, Roy JP, Keefe GP, DeVries TJ, Middleton JR, Dufour S, Barkema HW (2017) Distribution of nonaureus staphylococci species in udder quarters with low and high somatic cell count, and clinical mastitis. J Dairy Sci 100: 5613-5627.
De Visscher A, Piepers S, Haesebrouck F, De Vliegher S (2016) Teat apex colonization with coagulase-negative Staphylococcus species before parturition: distribution and species-specific risk factors. J. Dairy Sci 99: 1427-1439.
Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50: 2568-2576.
Dufour S, Munoz M (2018) Milk bacteriological analysis using MALDI-TOF technology. Carol Hulland, University of Wisconsin-Madison, Version. pp 1-5; available on: https://www.nmconline.org/wp-content/uploads/2018/04/4.20-p.m.-04.17.18-Edited-MALDI_ToF-Factsheet-13-04-2018.pdf.
Garcia AB, Shalloo L (2015) Invited review: the economic impact and control of paratuberculosis in cattle. J Dairy Sci 98: 5019-5039.
Goff JP, Horst RL (1997) Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 80: 1260-1268.
Huijps K, Lam TJ, Hogeveen H (2008) Costs of mastitis: facts and perception. J Dairy Res 75:113-120.
Jackson P, Cockcroft P (2002) Clinical examination of farm animals. Blackwell Science Ltd Oxford, UK, ISBN 0-632-05706-8, pp 154-166.
Kassim A, Pflüger V, Premji Z, Daubenberger C, Revathi G (2017) Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast. BMC Microbiol 17: 128.
Kaya E, Yılmaz S, Ceribasi S (2019) Protective role of pro polis on low and high dose furan-induced hepatotoxicity and oxidative stress in rats. J Vet Res 63: 423-431.
Kırkan S, Parın U, Tanır T, Yuksel HT (2018) Identification of the Staphylococcus species which cause cattle mastitis using MALDI-TOF MS. Appr Poult Dairy & Vet Sci 4: 317-323.
Ma J-Q, Liu C-M, Qin Z-H, Jiang J-H, Sun Y-Z (2011) Ganoderma applanatum terpenes protect mouse liver against benzo(α)pyren-induced oxidative stress and inflamma tion. Environ Toxicol Pharm 31: 460-468.
Mahapatra A, Panigrahi S, Patra RC, Rout M, Ganguly S (2018) A study on bovine mastitis related oxidative stress along with therapeutic regimen. Int J Curr Microbiol Appl Sci 7: 247-256.
Malinowski E, Lassa H, Kłossowska A, Smulski S, Markiewicz H, Kaczmarowski M (2006) Etiological agents of dairy cows’ mastitis in western part of Poland. Pol J Vet Sci 9: 191-194.
Mørk T, Jørgensen HJ, Sunde M, Kvitle B, Sviland S, Waage S, Tollersrud T (2012) Persistence of staphylococcal species and genotypes in the bovine udder. Vet Microbiol 159: 171-180.
Mpatswenumugabo JP, Bebora LC, Gitao GC, Mobegi VA, Iraguha B, Kamana O, Shumbusho B (2017) Prevalence of subclinical mastitis and distribution of pathogens in dairy farms of Rubavu and Nyabihu Districts, Rwanda. J Vet Med 2017: 8456713.
Ndahetuye JB, Persson Y, Nyman A-K, Tukei M, Ongol MP, Båge R (2019) Aetiology and prevalence of subclinical mastitis in dairy herds in peri-urban areas of Kigali in Rwanda. Trop Anim Health Prod 51: 2037-2044.
Oliveira L, Hulland C, Ruegg PL (2013) Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J Dairy Sci 96: 7538-7549.
Ozbey G, Otlu B, Yakupogullari Y, Celik B, Tanriverdi ES, Kelestemur N, Safak T, Risvanli A, Persad A, Sproston E (2022) Investigation of bacterial pathogens in milk from mastitic dairy cattle by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Thai J Vet Med 52: 63-73.
Pascu C, Herman V, Iancu I, Costinar L (2022) Etiology of mastitis and antimicrobial resistance in dairy cattle farms in the Western Part of Romania. Antibiotics (Basel) 11: 57.
Sharifi S, Pakdel A, Ebrahimi M, Reecy JM, Farsani SF, Ebrahimie E (2018) Integration of machine learning and meta-analysisidentifies the transcriptomic bio-signature of mastitis disease in cattle. PloS One 22: 13 e0191227.
Sharma N, Jeong DK (2013) Stem cell research: a novel boulevard towards improved bovine mastitis management. Int J Biol Sci 9: 818-829.
Sharma N, Singh NK, Singh OP, Pandey V, Verma PK (2011) Oxidative stress and antioxidant status during transition period in dairy cows. Asian-AJAS 24: 479-484.
Sharma L, Verma AK, Rahal A, Kumar A, Nigam R (2016) Relationship between serum biomarkers and oxidative stress in dairy cattle and buffaloes with clinical and sub clinical mastitis. Biotechnology 15: 96-100.
Shell WS, Sayed ML, El-Gedawy AA, El Sadek GM, Samy AA, Ali AMM (2017) Identification of Staphylococcus aureus causing bovine mastitis using MALDI -TOF fingerprinting. Int J Dairy Sci 12: 105-113.
Simsek H, Aksakal M (2005) The effect of vitamin E on lipid peroxidation and some antioxidants in blood and milk of cows with subclinical mastitis. Ankara Üniv Vet Fak Derg 52: 71-76.
Simsek H, Aksakal M (2006) The effect of vitamin E on levels of vitamin A, beta carotene, glutahione peroxidase and reduced glutathione in plasma and vitamin A in milk in cows with subclinical mastitis. F.Ü. Sağlık Bil. Dergisi 20: 199-203.
Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI -TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front Microbiol 6: 791.
Supré K, Haesebrouck F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S (2011) Some coagulase-negative Staphylococcus species affect udder health more than others. J Dairy Sci 94: 2329-2340.
Suriyasathaporn W, Chewonarin T, Vinitketkumnuen U (2012) Differences in severity of mastitis and the pathogens causing various oxidative product levels. Adv Biosci Biotechnol 3: 454-458.
Sztachańska M, Barański W, Janowski T, Pogorzelska J, Zduńczyk S (2016) Prevalence and etiological agents of subclinical mastitis at the end of lactation in nine dairy herds in North-East Poland. Pol J Vet Sci 19: 119-124.
Taponen S, Liski E, Heikkilä A-M, Pyörälä S (2017) Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. J Dairy Sci 100: 493-503.
Turk R, Koledic M, Macesic N, Benic M, Dobranic V, Duricic D, Cvetnič L, Samardzija M (2017) The role of oxidative stress and inflammatory response in the pathogenesis of mastitis in dairy cows. Mljekarstvo 67: 91-101.
Ustuner MA, Kaman D, Colakoglu N (2017) Effects of benfotiamine and coenzyme Q10 on kidney damage induced gentamicin. Tissue Cell 49: 691-696.
Vanderhaeghen W, Vandendriessche, S, Crombé F, Nemeghaire S, Dispas M, Denis O, Hermans K, Haesebrouck F, Butaye P (2013) Characterization of methicillin-resistant non-Staphylococcus aureus staphylococci carriage isolates from different bovine populations. J Antimicrob Chemother 68: 300-307.
Vasiľ M, Zigo F, Farkašová Z, Pecka-Kielb E, Bujok J, Illek J (2022) Comparison of effect of parenteral and oral supplementation of Selenium and vitamin E on selected antioxidant parameters and udder health of dairy cows. Pol J Vet Sci 25: 155-164.
Viguier C, Arora S, Gilmartin N, Welbeck K, O’Kennedy R (2009) Mastitis detection: Current trends and future perspectives. Trends Biotechnol 27: 486-493.
Waller KP (2000) Mammary gland immunology around parturition. Influence of stress, nutrition and genetics. Adv Exp Med Biol 480: 231-245.
Webster J (2020) Understanding the dairy cows. 3rd ed. Oxford, UK: Wiley Blackwell, p 258.
Zajac P, Tomaska M, Murarova A, Capla J, Curlej J (2012) Quality and safety of raw cow’s milk in Slovakia in 2011. Potravinarstvo Slovak J Food Sci 6: 64-73.
Zeryehun T, Abera G (2017) Prevalence and bacterial Isolates of mastitis in dairy farms in selected districts of Eastern Harrarghe Zone, Eastern Ethiopia. J Vet Med 2017: 6498618.
Zigo F, Elecko J, Vasil M, Ondrasovicova S, Farkasova Z, Malova J, Takac L, Zigova M, Bujok J, Pecka-Kielb E, Timkovicova-Lackova P (2019a) The occurrence of mastitis and its effect on the milk malondialdehyde concentrations and blood enzymatic antioxidants in dairy cows. Vet Med 64: 423-432.
Zigo F, Elečko J, Farkašová Z, Zigová M, Vasil M, Ondrašovičová S, Kudelkova L (2019b) Preventive methods in reduction of mastitis pathogens in dairy cows. J Microbiol Biotechnol Food Sci 9: 121-126.
Zigo F, Elečko J, Vasil’ M, Farkasová Z, Zigová M, Takáč L, Takáčová J, Bujok J, Kielb E (2019c) Assessment of lipid peroxidation in dairy cows with subclinical and clinical mastitis. Potravinarstvo Slovak J Food Sci 13: 244-250.
Zigo F, Elecko J, Vasil M, Farkasova Z, Zigova M, Takac L, Takacova J (2019d) Etiology of mastitis in herds of dairy cows and ewes situated in marginal parts of Slovakia. EC Vet Sci 4: 72-80.
Zigo F, Farkašová Z, Výrostková J, Regecová I, Ondrašovičová S, Vargová M, Sasáková N, Pecka -Kielb E, Bursová Š, Kiss DS (2022) Dairy cows’ udder pathogens and occurrence of virulence factors in staphylococci. Animals (Basel) 12: 470.
Zigo F, Vasil’ M, Ondrašovičová S, Výrostková J, Bujok J, Pecka-Kielb E (2021) Maintaining optimal mammary gland health and prevention of mastitis. Front Vet Sci 8: 607311.
Go to article

Authors and Affiliations

G. Ozbey
1
Z. Cambay
1
S. Yilmaz
2
O. Aytekin
1
F. Zigo
3
M. Ozçelik
1
B. Otlu
4

  1. Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Rectorate Campus, 23119, Elazig, Turkey
  2. Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Rectorate Campus, 23119, Elazig, Turkey
  3. Department of Nutrition and Animal Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, Košice, 04001, Slovakia
  4. Department of Medical Microbiology, Faculty of Medicine, Inonu University, Main Campus, 44280, Battalgazi, Malatya, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In the paper, verification of welding process parameters of overlap joints of aluminium alloys EN AW-6082 and EN AW-7075, determined on the grounds of a numerical FEM model and a mathematical model, is presented. A model was prepared in order to determine the range of process parameters, for that the risk of hot crack occurrence during welding the material with limited weldability (EN AW-7075) would be minimum and the joints will meet the quality criteria. Results of metallographic and mechanical examinations of overlap welded joints are presented. Indicated are different destruction mechanisms of overlap and butt joints, as well as significant differences in their tensile strength: 110 to 135 MPa for overlap joints and 258 MPa on average for butt joints.

Go to article

Authors and Affiliations

T. Wojdat
ORCID: ORCID
P. Kustroń
K. Jaśkiewicz
M. Zwierzchowski
A. Margielewska
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to characterize the changes in microstructure and chemical composition of the austenitic overlays on a pressure vessel steel that occur in the vicinity of the interface between the overlay and the base material. The investigations were carried out on a 16Mo3 boiler pipes weld overlaid by 309 and 310 steels. The microstructural examinations were performed on longitudinal cross-sectioned samples. The qualitative and quantitative chemical composition analyses on metallographic samples were determined on Scanning Electron Microscopy (SEM) by means of Energy Dispersive Spectrometry (EDS). The article analyzes the influence of the solidification sequence in both types of steel on final microstructure.
Go to article

Authors and Affiliations

M. Rozmus-Górnikowska
1
S. Dymek
1
M. Blicharski
1
Ł. Cieniek
1
J. Kusiński
1

  1. AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current practice of reconstruction of oxidized turbine parts (due to hot corrosion) using arc welding methods facilitates restoration of the nominal shapes and dimensions, as well as other attributes and features. Intense development of 3D additive methods and techniques contributes to the repair/modification of different parts including gas turbine (GT) hardware. The article proves the viability of the concept of using a robotized additive arc welding metal active gas (MAG) process to repair and modify gas turbine diaphragms using different filler materials from the substrate. The industrialized robotic additive process (hybrid repair) shows that very good results were achieved if the diaphragm is cast of nickel-iron and the filler material for welding the passes is austenitic stainless steel (for instance 308 LSi). This is one of the novelties introduced to the repair process that was granted a patent (US11148235B2) and is already implemented in General Electric Service Centers.
Go to article

Authors and Affiliations

Piotr Steckowicz
1
ORCID: ORCID
Paweł Pyrzanowski
2
ORCID: ORCID
Efe Bulut
3

  1. GE Power Sp. z o.o. – Oddział Engineering Innovation Center w Warszawie, Al. Krakowska 110/114, 02-256 Warsaw, Poland
  2. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  3. GE Marmara Technology Center Müh. Hiz. Ltd. Sti. Tubitak-Mam Teknoloji Serbest Bolgesi, 41400, Gebze/Kocaeli, Turkey

This page uses 'cookies'. Learn more