Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study is to present the FAPPS (Forecasting of Air Pollution Propagation System) based on the CALPUFF puff dispersion model, used for short-term air quality forecasting in Krakow and Lesser Poland. The article presents two methods of operational air quality forecasting in Krakow. The quality of forecasts was assessed on the basis of PM10 concentrations measured at eight air quality monitoring stations in 2019 in Krakow. Apart from the standard quantitative forecast, a qualitative forecast was presented, specifying the percentage shares of the city area with PM10 concentrations in six concentration classes. For both methods, it was shown how the adjustment of the emissions in the FAPPS system to changes in emissions related to the systemic elimination of coal furnaces in Krakow influenced the quality of forecasts. For standard forecasts, after the emission change on June 7, 2019, the average RMSE value decreased from 23.9 μg/m3 to 14.9 μg/m3, the average FB value changed from -0.200 to -0.063, and the share of correct forecasts increased from 0.74 to 0.91. For qualitative forecasts, for the entire year 2019 and separately for the periods from January to March and October to December, Hit Rate values of 5.43, 2.18 and 3.48 were obtained, the False Alarm Ratios were 0.28, 0.24 and 0,26, and the Probability of Detection values were 0.66, 0.75, and 0.74. The presented results show that the FAPPS system is a useful tool for modelling air pollution in urbanized and industrialized areas with complex terrain
Go to article

Bibliography

  1. Chlebowska-Styś, A., Kobus, D., Zathey, M. & Sówka, I. (2019). The impact of road transport
  2. on air quality in selected Polish cities, Ecol. Chem Eng. A. 26(1–2), pp.19–36
  3. CIBSE TM41 (2006). Degree-days: theory and application, The Chartered Institution of Building Services Engineers 222 Balham High Road, London SW12 9BS
  4. Dresser, A.L. & Huizer, R.D. (2011). CALPUFF and AERMOD model validation study in the near field: Martins Creek revisited, J. Air Waste Manage. Assoc. 61, pp. 647–659. DOI:10.3155/1047-3289.61.6.647.
  5. EEA Report 9/2020 (2020). Air quality in Europe — 2020 report (https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report/(25.02.2022)).
  6. EMEP/CEIP (2018). Present state of emission data; https://www.ceip.at/status-of-reporting-and-review-results/2019-submissions
  7. ETC/ACM (2013). Technical Paper 2013/11 (R. Rouil, B. Bessagnet, eds). How to start with PM modelling for air quality assessment and planning relevant to AQD
  8. Gawuc, L., Szymankiewicz, K., Kawicka, D., Mielczarek, E., Marek, K., Soliwoda, M. & Maciejewska, J. (2021). Bottom–Up Inventory of Residential Combustion Emissions in Poland for National Air Quality Modelling: Current Status and Perspectives, Atmosphere 12, no. 11: 1460. DOI:10.3390/atmos12111460
  9. Ghannam, K. & El-Fadel, M. (2013). Emissions characterization and regulatory compliance at an industrial complex: an integrated MM5/CALPUFF approach. Atmos. Environ. 69, pp.156–169. DOI:10.1016/j.atmosenv.2012.12.022.
  10. GMES Mapping Guide for a European Urban Atlas v.1.01, (2010). (http://www.eea.europa.eu/data-and-maps/data )
  11. Godlowska, J., Tomaszewska, A.M., Kaszowski, W. .& Hajto, M. J. (2012) Comparison between modelled (ALADIN/MM5/CALMET) and measured (SODAR) planetary boundary layer height. in: Proc. ICUC8 – 8th International Conference on Urban Climates, 6-10.08.2012, Dublin, Ireland, 255 (http://smog.imgw.pl/pdf/255.pdf )
  12. Godłowska, J. (2019). The impact of meteorological conditions on air quality in Krakow. Comparative research and an attempt at a model approach. Seria: Monografie Instytutu Meteorologii I Gospodarki Wodnej Państwowego Instytutu Badawczego, p. 104, ISBN: 978-83-64979-29-3 9 (In Polish) (https://www.imgw.pl/sites/default/files/2019-12/wplyw-warunkow-meteorologicznych-na-jakosc-powietrza-w-krakowie.pdf )
  13. Godłowska, J. & Kaszowski, W. (2019): Testing various morphometric methods to determine vertical profile of wind speed in Krakow, Poland, Bound.-Layer Meteorol., 172, pp.107-132 DOI:10.1007/s10546-019-00440-9
  14. Grimmond, C. S. B. & Oke, T. R. (1999). Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form, J. Appl. Meteorol.38, 1262- 1292. DOI:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  15. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration, Arch. Environ. Prot. 43, pp. 48–64. DOI:10.1515/aep-2017-0005 .
  16. Jiřík, V., Hermanová, B., Dalecká, A., Pavlíková, I., Bitta, J., Jančík, P., Ośródka, L., Krajny, E., Sładeczek, F., Siemiątkowski, G., Kiprian, K. & Głodek Bucyk, E. (2020). Wpływ zanieczyszczenia powietrza na zdrowie ludności w obszarze polsko-czeskiego pogranicza. Opole 2020, ISBN 978-83-7342-714-3 (In Polish and Czech)
  17. Juda-Rezler, K. (2010) New challenges in air quality and climate modeling. Arch. Environ. Prot. 36, pp.3–28.
  18. Juginović, A., Vuković, M., Aranza, I. et al. (2021). Health impacts of air pollution exposure from 1990 to 2019 in 43 European countries. Sci Rep 11, 22516. DOI:10.1038/s41598-021-01802-5.
  19. Kanda, M, Inagaki, A, Miyamoto, T, Gryschka, M. & Raasch, S. (2013). A new aerodynamic parametrization for real urban surfaces. Bound.-Layer Meteorol.148, pp.357–377.DOI:10.1007/s10546-013-9818-x
  20. Oleniacz, R. & Rzeszutek, M. (2018). Intercomparison of the CALMET/CALPUFFmodeling system for selected horizontal grid resolutions at a local scale: a case study of the MSWI Plant in Krakow, Poland. Appl. Sci. 8, 1–19. DOI:10.3390/app8112301.
  21. PSU/NCAR Mesoscale Modeling System (https://a.atmoswashington.edu/~ovens/newwebpage/mm5-home.html (26.02.2022))
  22. Rood, A.S. (2014). Performance evaluation of AERMOD, CALPUFF, and legacy air dispersion models using the Winter Validation Tracer Study dataset. Atmos. Environ. 89, pp.707–720. DOI:10.1016/j.atmosenv.2014.02.054.
  23. Rzeszutek M. (2019). Parameterization and evaluation of the CALMET/CALPUFF model system in near-field and complex terrain– Terrain data, grid resolution and terrain adjustment method, Sci. Total Environ 689, pp.31–46, DOI:10.1016/j.scitotenv.2019.06.379
  24. Samek, L., Styszko, K., Stegowski, Z., Zimnoch, M., Skiba, A., Turek-Fijak, A., Gorczyca, Z., Furman,P., Kasper-Giebl, A., Rozanski, K. (2021) Comparison of PM10 Sources at Traffic and Urban Background Sites Based on Elemental, Chemical and Isotopic Composition: Case Study from Krakow, Southern Poland. Atmosphere, 12, 1364. DOI:10.3390/atmos12101364
  25. Scire, J. S., Robe, F. R., Fernau, M. E. & Yamartino R. J. (2000a). A user’s guide for the CALMET Meteorological Model (Version 5.0). Earth Tech, Inc., Concord, MA
  26. Scire, J. S., Strimaitis, D. G. & Yamartino R.J. (2000b). A user’s guide for the CALPUFF Dispersion Model (Version 5.0). Earth Tech, Inc., Concord, MA
  27. Schlünzen, K.H. & Sokhi, R.S. (2008). Overview of Tools And Methods For Meteorological And Air Pollution Mesoscale Model Evaluation And User Training. Joint Report by WMO and COST Action 728, GURME. pp. 116.
  28. Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C.& Joly, A. (2018). The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1 . Geosci. Model Dev., 11, pp.257–281. DOI:10.5194/gmd-11-257-2018
  29. Thunis, P., Miranda, A., Baldasano, J.M., Blond, N., Douros, J., Graff, A., Janssen, S., Juda-Rezler, K., Karvosenoja, N., Maffeis, G., Martilli, A., Rasoloharimahefa, M., Real, E., Viaene, P., Volta, M. & White, L. (2016). Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ. Sci. Policy. 65, pp.13–21. DOI:10.1016/j.envsci.2016.03.013.
  30. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), nitrogen dioxide, sulfur dioxide and carbon monoxide. (2021). Geneva: World Health Organization; 2021
  31. Yessad K. (2019). Basics about ARPEGE/IFS, ALADIN and AROME in the cycle 46t1r1 of ARPEGE/IFS (http://www.umr-cnrm.fr/gmapdoc/IMG/pdf/ykarpbasics46t1r1.pdf /28.02.2022
Go to article

Authors and Affiliations

Jolanta Godłowska
1
ORCID: ORCID
Kamil Kaszowski
1
Wiesław Kaszowski
1

  1. Institute of Meteorology and Water Management – National Research Institute, Poland
Download PDF Download RIS Download Bibtex

Abstract

The accession of Poland to the European Union involved the need or regional air quality assessment and brought radical change in requirements towards the sottware tools used for assessment purposes. According to Polish law, a zone is an agglomeration o rover 250 000 inhabitants, or a poviat (second level or local government administration in Poland), or a group of poviats, and assessment should consider both global and regional inllow or pollutants as well as the impact of local emission sources and significant sources in a voivodeship. These requirements have imposed a model range of over 250 km. Following an analysis or different models operating all over the world, the CALPUFF model together with the CALMET meteorological processor was chosen to be implemented in air quality assessment systems in Polish zones. This paper presents the results or model calculations performed within the air quality assessment in Mazowieckie voivodeship as well as compares them with the measurements obtained at automatic air monitoring stations.
Go to article

Authors and Affiliations

Wojciech Trapp

This page uses 'cookies'. Learn more