Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the field of medicine there is a need for the automatic detection of retinal disorders. Blindness in older persons is primarily caused by Central Retinal Vein Occlusion (CRVO). It results in rapid, irreversible eyesight loss, therefore, it is essential to identify and address CRVO as soon as feasible. Hemorrhages, which can differ in size, pigment, and shape from dot-shaped to flame hemorrhages, are one of the earliest symptoms of CRVO. The early signs of CRVO are, hemorrhages, however, so mild that ophthalmologists must dynamically observe such indicators in the retina image known as the fundus image, which is a challenging and time-consuming task. It is also difficult to segment hemorrhages since the blood vessels and hemorrhages (HE) have the same color properties also there is no particular shape for hemorrhages and it scatters all over the fundus image. A challenging study is needed to extract the characteristics of vein deformability and dilatation. Furthermore, the quality of the captured image affects the efficacy of feature Identification analysis. In this paper, a deep learning approach for CRVO extraction is proposed.
Go to article

Authors and Affiliations

Jayanthi Rajee Bala
1
Mohamed Mansoor Roomi Sindha
1
Jency Sahayam
1
Praveena Govindharaj
1
Karthika Priya Rakesh
1

  1. Thiagarajar College of Engineering, Madurai, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research concerning the issue of visualization of blood vessels in the human body. In the initial phase of the investigations the focus was on understanding the optical properties of human body tissues. Optical transmittance of human skin was measured. Skin transmittance reaches the maximum at around 670–850 nm and 970–1100 nm. The optimal wavelength suitable for work in reflected and transmitted light was chosen. It was based on extracting blood vessels from the image for using them further in a developed system. A unique measuring system with an integrated illuminator and highly sensitive light detectors for medical imaging and stereoscopic observation was created. The high usable value of the developed system was largely gained by the original numerical program for development of measurement results. The elaborated system of blood vessels’ visualization is a mobile device. It was tested for imaging subcutaneous blood vessels. Three-dimensional observation of circulation and microcirculation in subcutaneous breast tissues is possible. Practical tests of the elaborated device for blood vessels’ medical stereoscopic observations were presented. Tests at a wavelength of 850 nm were performed. It is planned to conduct patient tests in the future at the Maria Skłodowska-Curie Institute - Oncology Center (MSCI), the Branch in Gliwice, Poland.

Go to article

Authors and Affiliations

Z. Opilski
T. Pustelny
M. Pach
T. Hejczyk

This page uses 'cookies'. Learn more