Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The work presents the analysis results of the structure of the coat obtained by dipping in silumin AlSi5 of two grades of alloy cast steel: GX6CrNiTi18-10 (LH18N9T) and GX39Cr13 (LH14). The temperature of the silumin bath was 750±5°C, and the hold-up time of the cast steel element τ = 180 s. The absolute thickness of the coat obtained in the given conditions was g = 104 μm on cast steel GX6CrNiTi18-10 and g = 132 μm on GX39Cr13. The obtained coat consisted of three layers of different phase structure. The first layer from the base “g1`” was constructed of the phase AlFe including Si and alloy additives of the tested cast steel grades: Cr and Ni (GX6CrNiTi18-10) and Cr (GX39Cr13). The second layer “g1``” of intermetallic phases AlFe which also contains Si and Cr crystallizes on it. The last, external layer “g2” of the coat consists of the silumin containing the intermetallic phases AlFeSi which additionally can contain alloy additives of the cast steel. It was shown that there were no carbides on the coat of the tested cast steels which are the component of their microstructure, as it took place in the case of the coat on the high speed steels.

Go to article

Authors and Affiliations

T. Szymczak
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of research into the characteristics of cast steel alloyed with chromium and vanadium, subjected to heat treatment for increased strength parameters. In the first part, it discusses the state-of-the-art knowledge regarding technological developments in the field of cast-steel alloys and the influence of individual alloying additives on the microstructure and the properties of the steel alloy. Further sections present the results of microstructure observations performed with light microscopy, scanning electron microscopy, and transmission electron microscopy. This research focuses on the material in the state directly after casting and after heat treatment, which involved quenching and tempering at 200 °C. The microstructural analysis performed as part of this research has informed the discussion of the results obtained from tensile and impact strength tests. The article also includes the results of a fractography analysis performed as the final part of the tests and offers a general summary and conclusions.
Go to article

Bibliography

[1] Bartocha, D., Kilarski, J., Suchoń, J., Baron, C., Szajnar, J. & Janerka, K. (2011). Low-alloy constructional cast steel. Archives of Foundry Engineering. 11(spec.3), 265-271. ISSN (1897-3310). (in Polish).
[2] Skołek, E., Szwejkowska, K., Chmielarz, K., Świątnicki, W. A., Myszka, D. & Wieczorek, A.N. (2022). The microstructure of cast steel subjected to austempering and B-Q&P heat treatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 53(7), 2544-2560. https://doi.org/10.1007/s11661-022-06685-3.
[3] Kniaginin, G. (1977). Cast steel: Metallurgy and foundry. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[4] Sobula, S., Tęcza, G., Krasa, O. & Wajda, W. (2013). Grain refinement of low alloy Cr-Mn-Si-Ni-Mo cast steel with boron, titanium and rare elements additions. Archives of Foundry Engineering. 13(3) 153-156. ISSN (1897-3310). (in Polish).
[5] Gajewski, M. & Kasińska, J. (2012). Effects of Cr - Ni 18/9 austenitic cast steel modification by mischmetal. Archives of Foundry Engineering. 12(spec.4), 47-52. DOI: 10.2478/v10266-012-0105-y.
[6] Lazarova, R., Petrov, R.H., Gaydarova, V., Davidkov, A., Alexeev, A., Manchev, M. & Manolov, V. (2011). Microstructure and mechanical properties of P265GH cast steel after modification with TiCN particles. Materials & Design. 32(5), 2734-2741. DOI: 10.1016/J.MATDES.2011.01.024.
[7] Yang, S.Z. (2010). Vanadium Metallurgy. Beijing: Metallurgical Industry Press.
[8] Dobrzański, L.A. (2002). Fundamentals of materials science and metal science. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[9] Baoxiang, Y., Jinyong, H., Guifang, Z. & Jike, G. (2021). Applications of vanadium in the steel industry. Vanadium. 267-332. DOI: 10.1016/B978-0-12-818898-9.00011-5.
[10] Panin, S.V., Maruschak, P.O., Vlasov, I.V., Syromyatnikova, A.S., Bolshakov, A.M., Berto, F., Prentkovskis, O. & Ovechkin, B.B. (2017). Effect of operating degradation in arctic conditions on physical and mechanical properties of 09Mn2Si pipeline steel. Procedia Engineering. 178, 597-603. https://doi.org/10.1016/j.proeng.2017.01.117.
[11] Wyrzykowski, J.W., Pleszakow, E. & Sieniawski, J. (1999). Deformation and cracking of metals. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish).
[12] Kocańda, S. (1972). Fatigue destruction of metals. Warszawa: Wydawnictwo: Naukowo-Techniczne. (in Polish).
[13] Maciejny, A. (1973). Brittleness of metals. Katowice: Wydawnictwo “Śląsk”. (in Polish).
[14] Kalandyk, B. & Zapała, R. (2008). Effect of heat treatment parameters on the properties of low-alloy cast steel with microadditions of vanadium. Archives of Foundry Engineering. 8(3), 137-140. ISSN(1897-3310).
[15] Kalandyk, B., Sierant, Z. & Sobula, S. (2009). Optimisation of microstructure, yield and impact strength of carbon cast steel by vanadium additions. Przegląd Odlewnictwa. 59(3), 108-113. (in Polish).
[16] Kalandyk, B. & Głownia, J. (2003). Influence of V and Mo and heat treatment of constructional Mn–Ni cast steels acquirement of yield strength above 850MPa. Archiwum Odlewnictwa. 3(8), 69-74. (in Polish). ISSN 1642-5308.
[17] Szajnar, J., Studnicki, A., Głownia, J., Kondracki, M., Suchoń, J. & Wróbel, T. (2013). Technological aspects of low-alloyed cast steel massive casting manufacturing. Archives of Foundry Engineering. 13(4), 97-102. ISSN (1897-3310).
[18] Sobula, S., Rąpała, M., Tęcza, G., & Głownia, J. (2009). Cast steels of a yield strength above 1300 MPa comparable to forgings. Przegląd Odlewnictwa. 59(3), 102-106. (in Polish).

Go to article

Authors and Affiliations

B. Białobrzeska
1
ORCID: ORCID

  1. Wrocław University of Technology, Poland

This page uses 'cookies'. Learn more