Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Stability of silver nanoparticles strongly influences the potential of their application. The literature shows wide possibilities of nanoparticles preparation, which has significantly impact on their properties. Therefore, the improvement of AgNPs preparation plays a key role in the case of their practical use. The pH values of the environment are one of the important factors, which directly influences stability of AgNPs. We present a comparing study of the silver nanoparticles prepared by „bottom-up“ methods over by chemical synthesis and biosynthesis using AgNO3 (0.29 mM) solution. For the biosynthesis of the silver nanoparticles, the green freshwater algae Parachlorella kessleri and Citrus limon extracts were used as reducing and stabilizing agents. Chemically synthesized AgNPs were performed using sodium citrate (0.5%) as a capping agent and 0.01% gelatine as a reducing agent. The formation and long term stability of those silver nanoparticles synthesized either biologically and chemically were clearly observed by solution colour changes and confirmed by UV-vis spectroscopy. The pH values of formed nanoparticle solutions were 3 and 5.8 for biosynthesized AgNPs using extract of Citrus limon and Parachlorella kessleri, respectively and 7.2 for chemically prepared AgNPs solution using citrate. The SEM as a surface imaging method was used for the characterization of nanoparticle shapes, size distribution and also for resolving different particle sizes. These micrographs confirmed the presence of dispersed and aggregated AgNPs with various shapes and sizes.
Go to article

Authors and Affiliations

O. Velgosová
A. Mražíková
J. Kavuličová
M. Matvija
E. Čižmárová
J. Willner
Download PDF Download RIS Download Bibtex

Abstract

Rutile-TiO2 nanorod thin films were formed on Ti disks via alkali treatment in NaOH solutions followed by heat treatment at 700°C. Ag nanoparticles were loaded on nanorods using a photo-reduction method to improve the photocatalytic properties of the prepared specimen. The surface characterization and the photo-electrochemical properties of the Ag-loaded TiO2 nanorods were investigated using a field-emission scanning electron microscope (FE-SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy and electrochemical impedance spectroscopy (EIS). The TiO2 nanorods obtained after the heat treatment were 80 to 180 nm thick and 1 μm long. The thickness of the nanorods increased with the NaOH concentration. The UV-Vis spectra exhibit a shift in the absorption edge of the Ag-loaded TiO2 to the visible light range and further narrowing of the bandgap. The decrease in the size of the capacitive loops in the EIS spectra showed that the Ag loading effectively improved the photocatalytic activity of the TiO2 nanorods.
Go to article

Bibliography

[1] Z. Sun, J.H. Kim, Y. Zhao, F. Bijarbooneh, V. Malgras, Y. Lee, Y.M. Kang, S.X. Dou, J. Am. Chem. Soc. 133, 19314 (2011).
[2] Z.P. Tshabalala, D.E. Motaung, H.C. Swart, Phys. B Condens. Matter. 535, 227 (2018).
[3] Y. Chen, X. Li, Z. Bi, X. He, G. Li, X. Xu, X. Gao, Appl. Surf. Sci. 440, 217 (2018).
[4] Z. Yang, B. Wang, H. Cui, H. An, Y. Pan, J. Zhai, J. Phys. Chem. C 119, 16905 (2015).
[5] Y. Ren, W. Li, Z. Cao, Y. Jiao, J. Xu, P. Liu, S. Li, X. Li, Appl. Surf. Sci. 509, 145377 (2020).
[6] B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2009).
[7] G . Zhao, H. Kozuka, T. Yoko, Thin Solid Films 277, 147 (1996).
[8] J. Singh, K. Sahu, S. Choudhary, A. Bisht, S. Mohapatra, Ceram. Int. 46, 3275 (2020).
[9] S.L. Smitha, K.M. Nissamudeen, D. Philip, K.G. Gopchandran, Acta - Part A Mol. Biomol. Spectrosc. 71, 186 (2008).
[10] C. Wang, L. Yin, L. Zhang, Y. Qi, N. Lun, N. Liu, Langmuir 26, 12841 (2010).
[11] N.V. Long, P. Van Viet, L. Van Hieu, C.M. Thi, Y. Yong, M. Nogami, Adv. Sci. Eng. Med. 6, 214 (2013).
[12] M. Plodinec, A. Gajović, G. Jakša, K. Žagar, M. Čeh, J. Alloys Compd. 591, 147 (2014).
[13] D. Chen, Z. Jiang, J. Geng, Q. Wang, D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007).
Go to article

Authors and Affiliations

Kwangmin Lee
1
ORCID: ORCID
Daeheung Yoo
1 2
Ahmad Zakiyuddin
3
ORCID: ORCID

  1. Chonnam National University, School of Materials Science and Engineering, Gwangju 61186, Republic of Korea
  2. Quality Tech. Dept. Chosun Refractories Co., Ltd, Republic of Korea
  3. Universitas Indonesia, Department of Metallurgical and Materials Engineering, Depok 16425 Indonesia

This page uses 'cookies'. Learn more