Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The paper reviews selected methods of agricultural biogas production and characterizes their technical and technological aspects. The conditions of the anaerobic fermentation process in the reactor with adhesive skeleton bed were analyzed. The required technological criteria for the production of biogas from a substrate in the form of pig slurry were indicated. As part of experimental studies, evaluation of the biogas replacement resistance coefficient and the permeability coefficient as a function of the Reynolds number were made. The method of numerical simulation with the use of a tool containing computational fluid dynamics codes was applied. Using the turbulent flow model – the RANS model with the enhanced wall treatment option, a numerical simulation was carried out, allowing for a detailed analysis of hydrodynamic phenomena in the adhesive skeleton bed. The paper presents the experimental and numerical results that allow to understand the fluid flow characteristics for the intensification of agricultural biogas production.
Przejdź do artykułu

Bibliografia

[1] Grzegorzewicz J., Gruszecki Z., Sciezynski H., Cieslak R., Smaga M., Jurkowski A., Matyja K., Papuga W.: Bubble Reactor. Patent Office of the Republic of Poland. Patent Application P.174663, 1994 (in Polish).
[2] http://pfee.de/en/cellroll/ (accessed 15 Apr. 2018).
[3] http://www.ows.be/household_waste/dranco/ (accessed 15 Apr. 2018).
[4] https://www.hz-inova.com/hitachi-zosen-inova-doubles-up-with-contract-forsecond-kompogas-plant-in-peloponnese-region/ (accessed 12 May 2018).
[5] http://www.valorgainternational.fr/en/mpg3-128079–VALORGA-SANAEROBIC-DIGESTION-PROCESS.html (accessed 12 May 2018).
[6] Oniszk-Popławska A., Matyka M.: Final report on the field research. “Comprehensive assessment of the conditions for biogas production in the Lubelskie Voivodeship”. Regional Economic Change Management System, 2012 (in Polish).
[7] Jedrczak A.: Biological waste treatment. Przeglad Komunalny (2001), 6, 89–92 (in Polish). [8] Wałowski G.: Developing technique anaerobic digestion in the contex of renewable energy sources. In: Proc. 26th Eur. Biomass Conf., Copenhagen, 14-17 May 2018, 798–808
[9] Kowalczyk-Jusko A.: Biogas plants an opportunity for agriculture and the environment. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, 2013 (in Polish).
[10] Głodek E.: Report on the EU project POKL.08.02.01-16-028 / 09 Sources of Energy in the Opole region 2013 promotion, technologies, support, implementation. Institute of Ceramics and Building Materials, Opole 2010. (in Polish).
[11] den Boer E., Szpadt R.: Biogas plants as an opportunity for agriculture and the environment]. In: Proc. Conf. on 24 Oct. 2013, Dolnoslaski Osrodek Doradztwa Rolniczego we Wrocławiu (in Polish).
[12] Karłowski J., Kliber A., Myczko A., Golimowska R., Myczko R.: Agronomy in the sustainable development of modern agriculture]. In: Proc. 4th Sci. Conf. of the Polish Agronomic Society, Warszawa, 5-7 Sept. 2011 (in Polish).
[13] Myczko A., Myczko R., Kołodziejczyk T., Golimowska R., Lenarczyk J., Janas Z., Kliber A., Karłowski J., Dolska M.: Construction and Operation of Agricultural Biogas Plants. Wyd. ITP, Warszawa Poznan 2011.
[14] Kołodziejczyk T., Myczko R., Myczko A.: Use of residual non-food cellulosic material for biogas production. Ciepłownictwo, Ogrzewanictwo, Wentylacja 42(2011), 9, 360–363. (in Polish).
[15] Wałowski G.: Interpretation of the mechanism of biogas flow through an adhesive bed in analogy to gas-permeability for a structural model of a porous material. Int. J. Curr. Res. 10(2018), 12, 76225–76228.
[16] Wałowski G.: Multi-phase flow assessment for the fermentation process in monosubstrate reactor with skeleton bed. J. Water Land Dev. 42(2019), 7-9, 150–156.
[17] Myczko A., Kliber A., Tupalski L.: The latest achievements in the field of renewable energy sources along with the presentation of barriers to the implementation of research results into business practice. In: The Latest Developments in the Field of RES, Including the Presentation of Barriers to the Implementation of Research Results in Business Practice and Suggestions for their Solutions (B. Mickiewicz, Ed.), Koszalin 2012 (in Polish).
[18] Wałowski G., Borek, K. Romaniuk W., Wardal W.J., Borusewicz A.: Modern Systems of Obtaining Energy – Biogas. Wydawnictwo Wyzszej Szkoły Agrobiznesu w Łomzy, Łomza 2019 (in Polish).
[19] Strzelecki T., Kostecki S., Zak S.: Modelling of flows through porous media. Dolnoslaskie Wydawnictwo Edukacyjne, Wrocław, 2008. (in Polish).
[20] https://www.ansys.com/products/fluids/ansys-fluent (accessed 15 Apr. 2018).
Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences, Falenty, Department of Renewable Energy, Poznań Branch, ul. Biskupińska 67, 60-463 Poznań, Poland

Abstrakt

In this paper study results of selected production methods for agricultural biogas are shown and technical and technological aspects of these methods are described for monosubstrate bioreactors. Based on the available literature, modelling of mixing in bioreactors using computational fluid dynamics (CFD) was is demonstrated. As part of the research, the numerical simulation method was used with a tool that contains CFD codes. The model k-ε is used to simulate the mean flow characteristics under turbulent flow conditions. This is a two-equation model that gives a general description of turbulence. The work presents the results of numerical studies that make it possible to understand the characteristics of fluid flow in the adhesive bed used for the production of agricultural biogas. The tests showed that in the core of the adhesive bed there is a flow of 0.19 m∙s –1, while in the outer part of the bed there is a flow in the range 0.01–0.02 m∙s –1. Taking into account the substrate inflow of 0.17 m∙s –1 (in the upper part of the fermentor), it was observed that the Klinkenberg effect for autocyclic movement (from bottom to top) takes place. The novelty in the article is the observation of the dominant flow in the core of the bed and the autocyclic flow in the opposite direction in the peripheral areas of the adhesive bed.
Przejdź do artykułu

Autorzy i Afiliacje

Grzegorz Wałowski
1
ORCID: ORCID

  1. Institute of Technology and Life Sciences – National Research Institute, Falenty, al. Hrabska 3, 05-090 Raszyn, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji