Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The subject of the work are modern composite materials with increased wear resistance intended for elements of machines operating in difficult conditions in the construction and mining industries. The study determined the effect of zone reinforcement of GX120Mn13 cast steel with macroparticles (Al 2O 3+ZrO 2) on the corrosion resistance and abrasion wear of the composite thus obtained. SEM studies have shown that at interface between two phases, and more precisely on the surface of particles (Al 2O 3+ZrO 2) a durable diffusion layers are formed. During the corrosion tests, no significant differences were found between the obtained parameters defining the corrosion processes of GX120Mn13 cast steel and GX120Mn13 with particles (Al 2O 3+ZrO 2) composite. No intergranular corrosion was observed in the matrix of the composite material, nor traces of pitting corrosion at both phases interface. This is very important in terms of tested material’s service life. Reinforcement of cast steel with particles (Al 2O 3+ZrO 2) resulted in a very significant improvement in the abrasion resistance of the composite – by about 70%. After corrosion tests, both materials were subjected to further operational investigations. These examinations consisted in determining the impact of corrosion processes on the durability of the composite in terms of abrasion. The obtained results indicate that corrosion processes did not significantly deteriorate the wear resistance of both the cast steel and the composite.
Go to article

Bibliography

[1] Uetz, H. (1986). Abrasion and Erosion. Munich–Vienna: Carl Hanser Verlag Publ.
[2] Hebda, M., Wachal, A. (1980). Trybology. Warsaw: Scientific and Technical Publ (in Polish).
[3] Kalandyk, B., Zapała, R., Kasińska, J. & Madej, M. (2021). Evaluation of microstructure and tribological propertiesof GX120Mn13 and GX120MnCr18-2 cast steels. Archives of Foundry Engineering. 21(4), 67-76. DOI: 10.24425/afe.2021.138681.
[4] Marcus, P. (2017). Corrosion mechanisms in theory and practice. London–New York: CRC Press.
[5] Podrzucki, C. (1991). Cast iron. Structure, properties, application. vol. 2. Krakow: ZG STOP Publ (in Polish).
[6] Kaczmar, J., Janus, A., Samsonowicz, Z. (1998). Influence of technological parameters on the production of selected parts of machines reinforced with ceramic fibers. Report of Institute of Machine and Automation Technology, Wroclaw University of Science and Technology, Series SPR, 35 (in Polish). [7] Kurzawa, A., Kaczmar, J.W. & Janus, A. (2008). Selected mechanical properties of aluminum composite materials reinforced with SiC particles. Archives of Foundry Engineering. 8(2), 99-102.
[8] Kaczmar, J.W. & Kurzawa, A. (2012). The effect of α-alumina particles on the properties of EN AC-44200 Al alloy based composite materials. Journal of Achievements in Materials and Manufacturing Engineering. 55(1), 39-44.
[9] Jach, K., Pietrzak K., Wajler, A., Sidorowicz, A. & Brykała, U. (2013). Application of ceramic preforms to the manufacturing of ceramic – metal composites. Archives of Metallurgy and Materials, 58(4), 1425-1428. DOI: 10.2478/amm-2013-0188.
[10] Gawroński, J., Szajnar, J. & Wróbel, P. (2004). Study on theoretical bases of receiving composite alloy layers on surface of cast steel castings. Journal of Materials Processing Technology. 157, 679-682. DOI: 10.1016/j.jmatprotec.2004.07.153.
[11] Szajnar, J., Walasek, A., & Baron, C. (2013). Tribological and corrosive properties of the parts of machines with surface alloy layer. Archives of Metallurgy and Materials. 58(3), 931-936. DOI: 10.2478/amm-2013-0104.
[12] Hryniewicz, T., Rokosz, K. (2010). Theoretical basis and practical aspects of corrosion. Koszalin: Publ. House of Koszalin University of Technology (in Polish).
[13] Medyński, D. & Chęcmanowski, J. (2022). Corrosion resistance of L120G13 steel castings zone-Reinforced with Al2O3. Materials. 15(12), 4090, 1-14. https://doi.org/10.3390/ma15124090.
[14] Song, Y., Jiang, G., Chen, Y., Zhao, P. & Tian, Y. (2017). Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Scientific Reports. 7, 6865, 1-13. https://doi.org/10.1038/s41598-017-07245-1.

Go to article

Authors and Affiliations

Daniel Medyński
1
ORCID: ORCID

  1. Witelon Collegium State University, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mutual influence of fatigue processes, abrasive wear and corrosion of chain links on the functional properties of mining round link chains has been presented in this paper. Selected results of experimental investigations in the field of synergic impact of these destructive processes on the operational durability of mining chains have also been presented. The emphasis was given to the necessity of a comprehensive consideration of destructive processes that occur in various conditions of use of round link chains applied in mining machines.
Go to article

Bibliography

[1] www.fasing.pl, accessed: 14.06.2018
[2] E . Remiorz, S. Mikuła, Podstawowe formy degradacji własności użytkowych łańcuchów ogniwowych górniczych stosowanych w maszynach ścianowych. Maszyny Górnicze 35 (3), (2017).
[3] S. Mikuła, Trwałość zmęczeniowa cięgien łańcuchowych górniczych maszyn urabiających i transportowych. Prace Badawcze CMG Komag, Gliwice (1978).
[4] S. Kocańda, Zmęczeniowe niszczenie metali. WNT , Warszawa (1972).
[5] P .M. Wnuk, Pojęcia i zależności w liniowej i nieliniowej mechanice pękania. Eksploatacja i Niezawodność – Maintenance and Reliability 6 (1) (2004).
[6] J. Gubała, E. Zięba, Wykorzystanie mechaniki pękania do określenia wytrzymałości konstrukcji w warunkach oddziaływania korozyjnego. Przegląd Mechaniczny 35 (1) (1976).
[7] K . Kotwica, K. Furmanik, B. Scherf, Wpływ warunków pracy na zużycie i trwałość cięgien łańcuchowych zgrzebłowych przenośników ścianowych w wybranych kopalniach węgla kamiennego. Przegląd Górniczy 67 (11), (2011).
[8] J. Hankus, M. Szot, A. Pytlik, K. Paradowski, Badania łańcuchów ogniwowych górniczych. Materiały Sympozjum Szkoleniowego Europejskiego Studium Menedżerskiego, Jastrzębie Zdrój (2006).
[9] H . Kania, Kształtowanie struktury oraz odporność korozyjna powłoki Zn-Al otrzymanych metodą metalizacji zanurzeniowej. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[10] M. Dolipski , E. Remiorz, P. Sobota, J. Osadnik, Komputerowe badania wpływu zużycia den gniazd i flanki zębów bębna na położenie ogniw w gniazdach bębna łańcuchowego. Mechanizacja i Automatyzacja Górnictwa 49 (4), (2011).
[11] M. Dolipski, E. Remiorz, P. Sobota, Determination of dynamic loads of sprocket drum teeth and seats using mathematical model of a scraper conveyor. Arch. Min. Sci. 57 (4), (2012).
[12] M. Dolipski, P. Cheluszka, E. Remiorz, P. Sobota, Innowacyjne górnicze przenośniki zgrzebłowe. Wydawnictwo Politechniki Śląskiej, Gliwice (2017).
[13] A .N. Wieczorek, Influence of Shot Peening on Abrasion Wear in Real Conditions of Ni-Cu-Ausferritic Ductile Iron. Arch Metall. Mater. 61 (4), (2016).
[14] A .N. Wieczorek, Comparative studies on the wear of ADI alloy cast irons as well as selected steels and surfacehardened alloy cast steels in the presence of abrasive. Arch. Metall. Mater. 62 (1), (2017).
[15] S. Mikuła, Ł. Gajda, Metody badań zużycia ściernego łańcuchów górniczych. Zeszyty Naukowe Politechniki Śląskiej, s. Górnictwo 93 (1978).
[16] E . Remiorz, S. Mikuła, Diagnosis of round link chains resistance to abrasive wear. Technicka Diagnostika 27 (1), (2018).
[17] B . Pawlukiewicz, J. Wiederman, Mechanizm niszczenia ogniw łańcuchów górniczych podczas eksploatacji. Inżynieria Materiałowa 19 (5), (1998).
[18] E . Remiorz, S. Mikuła, Eksploatacyjna diagnostyka ogniwowych łańcuchów górniczych stosowanych w pociągowych układach łańcuchowych maszyn ścianowych. Maszyny Górnicze 36 (1), (2018).
Go to article

Authors and Affiliations

Eryk Remiorz
1
ORCID: ORCID
Stanisław Mikuła
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mining, Safety Engineering and Industrial Automation, Department of Mining Mechanization and Robotisation, 2 Akademicka Str., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of research on steel castings GX120Mn13 (L120G13 by PN-89/H-83160), zone-reinforced by elektrocorundum particles (Al2O3), with a grain size from 2 to 3.5 mm. Studies revealed continuity at interface between composite components and formation of a diffusion zone in the surface layer of electrocorundum grains. In the area of this zone, simple manganese segregation and reverse iron and chromium segregation were found. The transfer of these elements from cast steel to electrocorundum grains resulted superficial depletion in aluminum and oxygen in this area. No porosity was observed at the interface between two components of the composite. We found it very beneficial from an exploitation point of view, as confirmed by the study of resistance to abrasive wear.
Go to article

Bibliography

[1] Matthews, F.L., Rawlings, R.D. (1999). Composite Materials. Engineering and Science. CRC Press: Boca Raton, FL, USA.
[2] Kocich, R., Kunčická, L., Král, P. & Strunz, P. (2018). Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Materials Design. 160, 828-835. Materials 2020. 13, 4161, p. 13 of 15.
[3] Kunčická, L., Kocich, R., Dvořák, K. & Macháčková, A. (2019). Rotary swaged laminated Cu-Al composites. Effect of structure on residual stress and mechanical and electric properties. Materials Science Engineering A. 742, 743-750.
[4] Kunčická, L., Kocich, R. (2018) Deformation behaviour of Cu-Al clad composites produced by rotary swaging. IOP Conf. Ser. Mater. Sci. Eng. 369, Kitakyushu City, Japan.
[5] Clyne, T.W., Withers, P.J. (1993) An Introduction to Metal Matrix Composites. Cambridge University Press: New York, NY, USA.
[6] Tjong, S. & Ma, Z. (2000). Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science Engineering R: Reports 29, 49-113.
[7] Górny, Z., Sobczak, J. (2005). Modern casting materials based on non-ferrous metals. Krakow. Ed. ZA-PIS.
[8] Sobczak, J. & Sobczak, N. (2001). Pressure infiltration of porous fibrous structures with aluminum and magnesium alloys. Composites. 1(2), 155-158.
[9] Klomp, J. (1987). Fundamentals of diffusion bonding. Amsterdam Ed. Ishida, Elsevier Science Publishers, 3-24.
[10] Kaczmar, J., Janus, A., Samsonowicz, Z. (1997). Influence of technological parameters on production of selected machine parts reinforced with ceramic fibers. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 5.
[11] Kaczmar, J., Janus, A., Kurzawa, A. (2002). Development of basics technology of manufacturing machine and device parts from aluminum composites reinforced with zones of ceramic particles. Reports of Institute of Machine Technology and Automation of Wrocław University of Science and Technology. SPR No 11.
[12] Dmitruk, A.G., Naplocha, K., Żak, A. M., Strojny-Nędza, A., Dieringa, H. & Kainer, K. (2019). Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration. Journal of Materials Engineering and Performance. 28(10), 6248-6257.
[13] Maj, J., Basista, M., Węglewski, W., Bochenek, K., Strojny-Nędza, A., Naplocha, K., Panzner, T., Tatarková, M., Fiori, F. (2018). Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze casting. Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing. 715,154-162.
[14] Szajnar, J., Wróbel, P., Wróbel, T. (2008). Model castings with composite surface layer - application. Archive of Foudry Enginnering. 8(3), 105-110.
[15] Gawroński, J., Szajnar, J., Wróbel, P. (2005). Surface composite layers of cast iron - ceramic particles. Archive of Foundry. 5(17), 107-114.
[16] Marcinkowska, J. (1986). Wear-resistant casting coatings on cast steel. Solidification of Metals and Alloys. 6, 37-42.
[17] Baron, Cz., Gawroński, J. (2006). Abrasive wear resistance of sandwich composites based on iron alloys. Composites. 6(3), 45-49.
[18] Operation and maintenance documentation of test stand T-07.
Go to article

Authors and Affiliations

Daniel Medyński
ORCID: ORCID
A.J. Janus
1

  1. Witelon State University of Applied Science in Legnica ul. Sejmowa 5A, 59 – 220 Legnica, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present research, we used molecular dynamics simulation to determine the effect of cutting parameters on micro-grain boundary structures and Burgers vector distribution in single crystal iron and polycrystalline iron materials. The result showed that the destruction of the lattice in polycrystalline iron caused by the cutting tool was restricted to the contact surface area. In addition, in the precision machining process, a higher refining grain was observed on the iron surface. During the cutting process of single crystal iron, large-scale slip occurred along the <111> crystal direction on the {110} crystal plane. And the slip presented an annular shape.
Go to article

Authors and Affiliations

Zhiming Liu
1
Qiang Zhang
2
Fangying Liu
2
Hezhe Zhang
2

  1. China University of Mining and Technology (Beijing), Beijing 100083, China
  2. Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Download PDF Download RIS Download Bibtex

Abstract

The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex”) cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex” in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

Go to article

Authors and Affiliations

S. Pietrowski
Download PDF Download RIS Download Bibtex

Abstract

Currently, due to the economic and ecological aspects, light alloys are increasingly important construction material, in particular in the transport industry. One of the popular foundry magnesium alloys is the alloy AZ91, which among others due to mechanical properties and technological features, is used, for example, for light structural parts.
The paper presents the results of research on modification of the AZ91 alloy surface layer in the plasma electrolytic oxidation process. The change of usable properties of the produced coatings was obtained by introducing additions of silicon carbide or boron nitride. The thickness and hardness of the protective layers produced, resistance to scratches and corrosion resistance were determined. Moreover, the friction coefficient of the coating-steel pair was investigated. The quality of the connections made between the coating and the substrate, i.e. the magnesium alloy, was also evaluated. The results obtained for coatings with silicon carbide or boron nitride additives were always compared to the results obtained for unmodified samples.
On the basis of the obtained results, it was shown that the introduction of boron nitride additive to the AZ91 alloy coating produced in the plasma electrolytic oxidation process significantly improves the resistance to: (i) corrosion and (ii) abrasive wear of the coating.
Go to article

Authors and Affiliations

D. Pelczar
1
P. Długosz
2
ORCID: ORCID
P. Darłak
2
ORCID: ORCID
A. Szewczyk-Nykiel
1
ORCID: ORCID
M. Nykiel
1
ORCID: ORCID
M. Hebda
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Engineering, 24 Warszawska St r., 31-155 Krakow, Poland
  2. Centre of Casting Technology, Research Network Lukasiewicz-Krakow Institute of Technology, Zakopiańska 73, 30-418 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results from a study on the impact of the cooling rate in the eutectoid transition on the abrasive wear of the as cast Zn-4Al alloy. The microstructure of the researched material consists of dendrites of the η solid solution and an (α+η) eutectic structure. During the eutectoid transformation at 275oC the distribution in the eutectic structure was transformed and fined. Heat treatment was carried out for this alloy, during which three cooling mediums were used, i.e. water, air and an furnace. For the research material obtained in this way, metallographic examinations were performed using the methods of light and scanning electron microscopy, as well as hardness measurements. It was found that faster cooling rate promoted the fragmentation of structural components, which translates into higher hardness of the material. This also had effects in the tribological wear of the tested alloy. As part of the tests, an abrasive wear test was carried out on a standard T-07 tester.

Go to article

Authors and Affiliations

M.M. Lachowicz
T. Leśniewski
M.B. Lachowicz
R. Jasionowski
Download PDF Download RIS Download Bibtex

Abstract

Cast martensitic alloy steel is used for the production of parts and components of machines operating under conditions of abrasive wear. One of the most popular grades is cast steel GX70CrMnSiNiMo2 steel, which is used in many industries, but primarily in the mining and material processing sectors for rings and balls operating in the grinding sets of coal mills. To improve the abrasion resistance of cast alloy tool steel, primary titanium carbides were produced in the metallurgical process by increasing the carbon content to 1.78 wt.% and adding 5.00 wt.% of titanium to test castings. After alloy solidification, the result was the formation of a microstructure consisting of a martensitic matrix with areas of residual austenite and primary titanium carbides evenly distributed in this matrix.
The measured as-cast hardness of the samples was 660HV and it increased to as much as 800HV after heat treatment.
The abrasion resistance of the sample hardened in a 15% polymer solution increased at least three times compared to the reference sample after quenching and tempering.
Go to article

Bibliography

[1] Głownia, J. (2002). Alloy steel castings-applications. Kraków: Fotobit. (in Polish).
[2] Dobrzański, L.A. (2006). Engineering materials and material design. Warszawa: WNT. (in Polish).
[3] Metals Handbook, (1990). 10-th Ed., vol. 1. ASM International.
[4] Głownia, J., Tęcza, G., Sobula, S., Kalandyk, B., Dzieja, A. (2007). Determination of the content and effect of residual austenite on the properties of cast L70H2GNM steel. Research done for Metalodlew S.A., unpublished. (in Polish).
[5] Głownia, J. (2017). Metallurgy and technology of steel castings. Sharjah: Bentham Science Publishers, cop.
[6] Mirzaee, M., Momeni, A., Keshmiri, H. & Razavinejad, R. (2014). Effect of titanium and niobium on modifying the microstructure of cast K100 tool steel. Metallurgical and Materials Transactions B. 45, 2304-2314. https://doi.org/10.1007/s11663-014-0150-8.
[7] Grabnar, K., Burja, J., Balaško, T., Nagode, A. & Medved, J. (2022). The influence of Nb, Ta and Ti modification on hot-work tool-steel grain growth during austenitization. Materiali in tehnologije. 56(3), 331-338. https://doi.org/10.17222/mit.2022.486.
[8] Srivastava, A.K. & Das, K. (2009). Microstructural and Mechanical Characterization of in Situ TiC and (Ti,W)C-Reinforced High Manganese Austenitic Steel Matrix Composites. Materials Science & Engineering A. 516, 1–6.
[9] Das, K., Bandyopadhyay, T.K. & Das, S. (2002). A review on the various synthesis routes of TiC reinforced ferrous based composites. Jurnal of Materials Science. 516(1-2), 1-6. https://doi.org/10.1016/j.msea.2009.04.041.
[10] Olejnik, E., Janas, A., Kolbus, A. & Sikora, G. (2011). The composition of reaction substrates for TiC carbides synthesis and its influence on the thickness of iron casting composite layer. Archives of Foundry Engineering. 11(spec.2), 165-168. ISSN (1897-3310).
[11] Olejnik, E., Tokarski, T., Sikora, G., Sobula, S., Maziarz, W., Szymański, Ł. & Grabowska, B. (2019). The effect of Fe addition on fragmentation phenomena, macrostructure, microstructure, and hardness of TiC-Fe local reinforcements fabricated in situ in steel casting. Metallurgical and Materials Transactions A. 50, 975-986. https://doi.org/10.1007/s11661-018-4992-6.
[12] Sobula, S., Olejnik, E. & Tokarski, T. (2017). Wear resistance of TiC reinforced cast steel matrix composite. Archives of foundry engineering. 17(1), 143-146. DOI: 10.1515/afe-2017-0026.
[13] Montealegre, M., Castro, G., Arias, J., Fernández-Vicente, A., Vázquez, J. (2008). Tool steel laser surface modification with TiC. In 3rd Pacific International Conference on Application of Lasers and Optics 2008, (pp. 890-894). Torneiros, Spain.
[14] Balanou, M., Karmiris-Obratański, P.P., Emmanouil-Lazaros., G.N., Markopoulos, A. (2021). Surface modification of tool steel by using EDM green powder metallurgy electrodes. In IOP Conference Series Materials Science and Engineering, 14-15 December 2021 (pp. 012014). Athens, Greece.
[15] Szymański, Ł., Olejnik, E., Tokarski, T., Kurtyka, P., Drożyński, D. & Żymankowska-Kumon, S. (2018). Reactive casting coatings for obtaining in situ composite layers based on Fe alloys. Surface and Coatings Technology. 350, 346-358. https://doi.org/10.1016/j.surfcoat.2018.06.085.
[16] Szymański, Ł., Olejnik, E., Sobczak, J.J., Szala, M., Kurtyka, P., Tokarski, T. & Janas, A. (2022). Dry sliding, slurry abrasion and cavitation erosion of composite layers reinforced by TiC fabricated in situ in cast steel and gray cast iron. Journal of Materials Processing Technology. 308, 117688. https://doi.org/10.1016/j.jmatprotec.2022.117688.
[17] Valdes, V.H., Guerra, F.V., Bedolla Jacuinde, A. & Pacheco-Cedeño, J. (2023). Development and characterization of a cast steel reinforced with primary carbides for high strength and severe wear applications. MRS Advances. 8, 1139-1143. DOI: 10.1557/s43580-023-00699-8.
[18] Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 10.24425/118823.
[19] Tęcza, G. & Garbacz-Klempka A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. ISSN (1897-3310).
[20] Tęcza, G. (2021). Changes in abrasive wear resistance during Miller test of Cr-Ni cast steel with Ti carbides formed in the alloy matrix. Archives of Foundry Engineering. 21(4), 110-115. DOI: 10.24425/afe.2021.139758.,
[21] Kalandyk, B. & Zapała, R. (2013). Effect of high-manganese cast steel strain hardening on the abrasion wear resistance in a mixture of SiC and water. Archives of Foundry Engineering. 13(4), 63-66. ISSN (1897-3310).
[22] Kasinska, J. & Kalandyk, B.(2017). Effects of rare earth metal addition on wear resistance of chromium-molybdenum cast steel. Archives of Foundry Engineering. 17(3), 63-68. DOI: 10.1515/afe-2017-0092.
[23] Sobula, S. & Kraiński, S. (2021). Effect of SiZr modification on the microstructure and properties of high manganese cast steel. Archives of Foundry Engineering. 21(4), 82-86. Doi: 10.24425/afe.2021.138683.
Go to article

Authors and Affiliations

Grzegorz Tęcza
1
ORCID: ORCID

  1. AGH University of Krakow, Poland

This page uses 'cookies'. Learn more