Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A specified weight-cutting system for irregular solid materials such as rubber is important for industrial engineering. Currently, the workers’ experience is used, which has low accuracy and efficiency. A specified weight cutting system for irregular solid material based on 3D scanning is proposed in this paper, which aims to overcome the inaccuracy and inefficiency of the manual cutting process. Firstly, the surface of the irregular solid material is scanned by a tracking 3D laser scanner, and a triangular mesh file is generated. Secondly, the defects of the 3D model are repaired by reverse engineering, and then the 3D model file of the irregular objects is generated. Finally, the cutting position of the specified weight solid material is calculated by the calculation algorithm in UG software. In short, this research creates a new method for processing data collected by the 3D scanner, by working jointly with multiple devices and software, facilitating the cutting of irregular solid materials with specified weights. Additionally, the system has the advantage of accuracy and efficiency over the experience of workers.
Go to article

Authors and Affiliations

Jiadong He
1
ORCID: ORCID
Yafeng Huang
2
Xiao Zang
1
Yajun Zhang
1

  1. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
  2. Xi’an Modern Chemistry Research Institute, Xi’an, 710065, China
Download PDF Download RIS Download Bibtex

Abstract

The present article deals with the possibility of using the reverse engineering method for the production of prototype molds by Patternless

process technology. Article describes method how to obtain virtual model by using a 3D scanner. Article also explains principle of the

Patternless process technology, which is based on the milling mold cavity using CNC machining equipment. The aim of the research is the

use of advanced technologies that speed up and facilitate the process of production prototype mold. The practical result of the presented

experiment is bronze casting, which serves as a foot rest bracket on historic bike.

Go to article

Authors and Affiliations

E. Krivoš
R. Pastirčák
P. Lehocký
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with evaluation of a 3D scanning method elaborated by the authors, by applying it to the analysis of the wear of forging tools. The 3D scanning method in the first place consists in the application of scanning to the analysis of changes in geometry of a forging tool by way of comparing the images of a worn tool with a CAD model or an image of a new tool. The method was evaluated in the context of the important measurement problems resulting from the extreme conditions present during the industrial hot forging processes. The method was used to evaluate wear of tools with an increasing wear degree, which made it possible to determine the wear characteristics in a function of the number of produced forgings. The following stage was the use it for a direct control of the quality and geometry changes of forging tools (without their disassembly) by way of a direct measurement of the geometry of periodically collected forgings (indirect method based on forgings). The final part of the study points to the advantages and disadvantages of the elaborated method as well as the potential directions of its further development.

Go to article

Authors and Affiliations

Marek Hawryluk
Jacek Ziemba
Łukasz Dworzak
Download PDF Download RIS Download Bibtex

Abstract

The paper presents and sums up the research and technical aspects of the modernization of the cutting tool of the dredger. Improper adjustment of the cutting elements not adjusted to the characteristics of excavated material is not an uncommon situation, causing versatile geological conditions. Relocation of the machines from one pit to another may result in the significant influence on the excavation process (wear, output, etc.). Common practice is the field try and error approach to obtain desired machine performance. In the paper authors present the approach with aid of cutting-edge technologies. Coupled DEM and kinematic simulations supported by the reverse engineering technologies of laser scanning were the fundamental drivers for final adjustments of the cutting tool at its present operational conditions.
Go to article

Bibliography

  1.  M. Saga et al., “Experimental Determination of the Manson-Coffin Curves for an Original Unconventional Vehicle Frame”, Materials 13, 4675 (2020), doi: 10.3390/ma13204675.
  2.  J. Dizo et al.,”Development of a New System for Attaching the Wheels of the Front Axle in the Cross-Country Vehicle”, Symmetry-Basel 12, 1156, (2020), doi: 10.3390/sym12071156.
  3.  S. Bosnajk and N. Zrnic, “Dynamics, failures, redesigning and environmentally friendly technologies in surface mining systems”, Arch. Civ. Mech. Eng. 12, 348–359 (2012).
  4.  D. Danicic, S. Sedmak, D. Ignjatovic, and S. Mitrovic, “Bucket wheel excavator damage by fatigue fracture – case study”, Procedia Mater. Sci. 3, 1723‒1728, 2014.
  5.  J. Peng, X. Liquan, L. Zheng, X. Liang, and Y Li, “Analysis on Layered Rock Cutting Process With Cutter Suction Dredger Based On Discrete Element Method”, in E-proceedings of the 38 th IAHR World Congress 09, 2019, doi: 10.3850/38WC092019-0333.
  6.  A. Amiadji, A. Baidowi, and R. Prayogo, “Development of Cutter Head Design in Cutter Suction Dredger with Thickness and Pitch Variation”, Int. J. Mar. Eng. Inn. Res. 3(3), 93‒108 (2019).
  7.  K. Pieczonka, Inżynieria maszyn roboczych. Cz. 1, Podstawy urabiania, jazdy, podnoszenia i obrotu, Wroclaw University of Science and Technology Publishing House, 2009, [in Polish].
  8.  R.N. Bray, A.D. Bates, and J.M. Land, Dredging: A Handbook for Engineers, Butterworth-Heinemann, 1996.
  9.  M. Macko, Z. Szczepański, D. Mikołajewski, E. Mikołajewska, and S. Listopadzki, “The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine”, in Proceedings of the 13th International Scientific Conference. RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham, 2016, doi: 10.1007/978-3-319-50938-9_36.
  10.  J. Andruszko, P. Moczko, and D. Pietrusiak, “The use of numerical methods in cutterhead dredger excavation unit optimization”, in Proc. XXIII International Conference on Material Handling, Construction and Logistics, MHCL 2019, 2019, pp. 141‒146.
  11.  I. Rojek, “Modelowanie i symulacja komputerowa złożonych zagadnień mechaniki nieliniowej metodami elementów skończonych i dyskretnych”, Prace Instytutu Podstawowych Problemów Techniki PAN, pp. 119‒146, 2007 [in Polish].
  12.  A. Danesh, A.A. Mirghaseim, and M. Palassi, “Evaluation of particle shape on direct shear mechanical behavior of ballast assembly using discrete element method (DEM)”, Transport. Geotech. 23, 100357 (2020).
  13.  P. Siemaszko and Z. Meyer, “Static load test curve analysis based on soil field investigations”, Bull. Pol. Acad. Sci. Tech. Sci., 67(2), 329‒337 2019 doi: 10.24425/bpas.2019.128607.
  14.  K. Pieczonka, Maszyny górnicze: Maszyny urabiające i ładujące do podziemnej eksploatacji złóż rud, Wroclaw University of Technology Publishing House, 1981, [in Polish].
  15.  H. Gilvari, W. de Jong, and D.L. Schott, “Breakage behavior of biomass pellets: an experimental and numerical study”, Comp. Part. Mech. 2020, doi: 10.1007/s40571-020-00352-3.
  16.  H. Hertz, “On the contact of rigid elastic solids and on hardness”, Ch 6: Assorted Papers, 1882.
  17.  R.D. Mindlin, “Compliance of Elastic Bodies in Contact”, J. Appl. Mech. 16(3), 259‒268 (1949).
  18.  Y. Tsuji, T. Tanaka, and T. Ishida, “Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe”, Powder Technol. 71, 239‒250 (1992).
  19.  P.A. Cundall and O.D.L. Strack, “A discrete numerical model for granular assemblies”, Géotechnique 29, 47‒65 (1979).
  20.  T. Rashi, K. Jeremy, and D. George, “Bucket trajectory classification of mining excavators”, Autom. Constr, 31, 128‒139 (2013).
  21.  S. Blouin, A. Hemami, and M. Lipsett, “Review of resistive force models for earthmoving processes”, J. Aerosp. Eng. 14(3), 102‒111 (2001).
  22.  S.M. Bosnjak, D.C.D. Oguamanam, and N.D. Zrnic, “The influence of constructive parameters on response of bucket wheel excavator superstructure”, Arch. Civ. Mech. Eng. 15(4), 977‒985, 2015.
  23.  E. Rusiński et. al., “Investigations And Modernizations Of Buckets Of Surface Mining Machines”, Eng. Struct. 90, 29‒37 (2015).
  24.  D. Pietrusiak, P. Moczko, and E. Rusiński, “Recent achievements in investigations of dynamics of surface mining heavy machines”, in Proc. 24th World Mining Congress: mining in a world of innovation – proceedings, 2016, pp. 295‒308.
  25.  J. Czmochowski, P. Moczko, D. Pietrusiak, G. Przybyłek, and E. Rusiński, “Selected Aspects of Technical Condition State Assessment of Spreaders Operating in Lignite Mines”, in Proc. Proceedings of the 13th International Scientific Conference Computer Aided Engineering, 2016, pp. 89‒98.
  26.  E. Rusiński and J. Czmochowski, T. Smolnicki, Zaawansowana metoda elementów skończonych w konstrukcjach nośnych, Wroclaw University of Science and Technology Publishing House, 2000, [in Polish].
Go to article

Authors and Affiliations

Jakub Andruszko
1
Przemyslaw Moczko
1
Damian Pietrusiak
1

  1. Department of Machine Design and Research, Wroclaw University of Science and Technology, ul. Ignacego Lukasiewicza 7/9, 50-371 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

3D scanning measurements are gaining popularity every year. Quick inspections on already captured point clouds are easy to prepare with the use of modern software and machine learning. To achieve repeatability and accuracy, some surface and measurement issues should be considered and resolved before the inspection. Large numbers of manufacturing scans are not intended for manual correction. This article is a case study of a small surface inspection of a turbine guide vane based on 3D scans. Small surface errors cannot be neglected as their incorrect inspection can result in serious faults in the final product. Contour recognition and deletion seem to be a rational method for making a scan inspection with the same level of accuracy as we have now for CMM machines. The main reason why a scan inspection can be difficult is that the CAD source model can be slightly different from the inspected part. Not all details are always included, and small chamfers and blends can be added during the production process, based on manufacturing standards and best practices. This problem does not occur during a CMM (coordinate measuring machine) inspection, but it may occur in a general 3D scanning inspection.
Go to article

Bibliography

  1.  W. Cuypers, N. Van Gestel, A. Voet, J. P. Kruth, J. Mingneau, and P. Bleys, “Optical measurement techniques for mobile and large-scale dimensional metrology,” Opt. Lasers Eng., vol. 47, no.  3–4, pp. 292–300, 2009, doi: 10.1016/j.optlaseng.2008.03.013.
  2.  An International Standard: Geometrical product specifications (GPS) – Acceptance and reverification tests for coordinate measuring machines (CMM), ISO 10360:2011, 2011.
  3.  B.S. Marció, P. Nienhaysen, D. Habor, and R.C.C. Flesch, “Quality assessment and deviation analysis of three-dimensional geometrical characterization of a metal pipeline by pulse-echo ultrasonic and laser scanning techniques,” Meas. J. Int. Meas. Confed., vol. 145, pp. 30–37, 2019, doi: 10.1016/j.measurement.2019.05.084.
  4.  GOM Inspect Brochure, 2019. [Online]. Available: https://www.3dteam.pl/wp-content/uploads/2020/11/GOM-Software.pdf.
  5.  Geomagic Control X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2020-10/3d-systems-controlx- en-letter-web-2020-10-07.pdf.
  6.  An International Standard: Dimensioning and Tolerancing, ASME Y14.5, 2019.
  7.  An International Standard: Geometrical tolerancing, ISO 1101, 2017.
  8.  J. Fan, L. Ma, A. Sun, and Z. Zou, “An approach for extracting curve profiles based on scanned point cloud,” Meas. J. Int. Meas. Confed., vol. 149, p. 107023, 2020, doi: 10.1016/j.measurement.2019.107023.
  9.  L. Li, M. Sung, A. Dubrovina, L. Yi, and L. J. Guibas, “Supervised fitting of geometric primitives to 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2019, pp.  2647–2655, doi: 10.1109/CVPR.2019.00276.
  10.  Y. Liu and Y. Xiong, “Automatic segmentation of unorganized noisy point clouds based on the Gaussian map,” CAD Comput. Aided Des., vol. 40, no. 5, pp. 576–594, 2008, doi: 10.1016/j.cad.2008.02.004.
  11.  Y. Yang, H. Fang, Y. Fang, and S. Shi, “Three-dimensional point cloud data subtle feature extraction algorithm for laser scanning measurement of large-scale irregular surface in reverse engineering,” Meas. J. Int. Meas. Confed., vol. 151, p. 107220, 2020, doi: 10.1016/j. measurement.2019.107220.
  12.  Y. Zhong, “Intrinsic shape signatures: A shape descriptor for 3D object recognition,” 2009 IEEE 12th Int. Conf. Comput. Vis. Work. ICCV Work, 2009, pp. 689–696, 2009, doi: 10.1109/ICCVW.2009.5457637.
  13.  M. Pauly, R. Keiser, and M. Gross, “Multi-scale Feature Extraction on Point-Sampled Surfaces,” vol. 22, no. 3, pp. 281–289, 2003.
  14.  D. Fehr, W.J. Beksi, D. Zermas, and N. Papanikolopoulos, “Covariance based point cloud descriptors for object detection and recognition,” Comput. Vis. Image Underst., vol. 142, pp. 80–93, 2016, doi: 10.1016/j.cviu.2015.06.008.
  15.  T. Hackel, J.D. Wegner, and K. Schindler, “Contour detection in unstructured 3D point clouds,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2016, pp. 1610–1618, doi: 10.1109/CVPR.2016.178.
  16.  H. Wang, C. Wang, H. Luo, P. Li, Y. Chen, and J. Li, “3-D Point Cloud Object Detection Based on Supervoxel Neighborhood With Hough Forest Framework,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 4, pp. 1570–1581, 2015, doi: 10.1109/ JSTARS.2015.2394803.
  17.  Geomagic Design X Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-designx- en-letter-web-2019-10-25.pdf.
  18.  Geomagic Wrap Overview, 2020. [Online]. Available: https://www.3dsystems.com/sites/default/files/2019-11/3d-systems-wrap-en-letter- web-2019-11-01.pdf.
  19.  The StL Format, 2021. [Online]. Available: http://www.fabbers.com/tech/STL_Format.
  20.  G. Lavoué, F. Dupont, and A. Baskurt, “A new CAD mesh segmentation method, based on curvature tensor analysis,” CAD Comput. Aided Des., vol. 37, no. 10, pp. 975–987, 2005, doi: 10.1016/j.cad.2004.09.001.
  21.  M. Centin and A. Signoroni, “RameshCleaner: conservative fixing of triangular meshes,” STAG Smart Tools Apps Graph. – Eurographics Italian Chapter Conference, 2015, doi: 10.2312/stag.20151300.
  22.  L. Di Angelo, P. Di Stefano, and A. E. Morabito, “Fillets, rounds, grooves and sharp edges segmentation from 3D scanned surfaces,” CAD Comput. Aided Des., vol. 110, pp. 78–91, 2019, doi: 10.1016/j.cad.2019.01.003.
  23.  L. Di Angelo and P. Di Stefano, “Geometric segmentation of 3D scanned surfaces,” CAD Comput. Aided Des., vol. 62, pp. 44–56, 2015, doi: 10.1016/j.cad.2014.09.006.
  24.  Q. Li, X. Huang, S. Li, and Z. Deng, “Feature extraction from point clouds for rigid aircraft part inspection using an improved Harris algorithm,” Meas. Sci. Technol., vol. 29, no. 11, 2018, doi: 10.1088/1361-6501/aadff6.
  25.  Y. Tao, Y. Q. Wang, H. B. Liu, and M. Li, “On-line three-dimensional point cloud data extraction method for scan-tracking measurement of irregular surface using bi-Akima spline,” Meas. J. Int. Meas. Confed., vol. 92, pp. 382–390, 2016, doi: 10.1016/j.measurement.2016.06.008.
  26.  G. Palma, P. Cignoni, T. Boubekeur, and R. Scopigno, “Detection of Geometric Temporal Changes in Point Clouds,” Comput. Graph. Forum, vol. 35, no. 6, pp. 33–45, 2016, doi: 10.1111/cgf.12730.
  27.  Computer workstation used by authors: “Intel(R) Xeon(R) CPU E5‒1650 v4 @ 3.60GHz.” 2020.
  28.  A. Jagannathan and E.L. Miller, “Three-dimensional surface mesh segmentation using curvedness-based region growing approach,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp.  2195–2204, 2007, doi: 10.1109/TPAMI.2007.1125.
Go to article

Authors and Affiliations

Marcin Jamontt
1
Paweł Pyrzanowski
2
ORCID: ORCID

  1. General Electric Company, al Krakowska 110-114, 02-265 Warsaw, Poland
  2. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, ul. Nowowiejska 24, 00-665 Warsaw, Poland

This page uses 'cookies'. Learn more