Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Although there are many methods and instruments for measuring viscosity, it is still difficult to determine a reliable value of the dynamic viscosity of complex chemicals such as paraffins and fatty acids. This is due to the complex and heterogeneous structure of these compounds in the case of commercial products. On the other hand, the measuring instrument should be selected very carefully, including its measuring principle and measuring range. This paper presents results of viscosity measurements of three organic PCMs (phase change materials) obtained in four different research institutions. Commercial products: paraffin, myristic acid (97%) and mixture of palmitic acid (55%) and stearic acid (45%) were selected as PCMs. Four different viscometers, namely Fungilab V-Pad, Rheotest LK 2.2, Rheometer Anton Paar MCR 102, and Brookfield DV-II + Pro have been used to determine temperature dependent dynamic viscosity of the tested PCMs. Using a large database of present measurement results, correlations were developed to calculate the dynamic viscosity of fatty acids and paraffins, which predict the experimental data within a band of ±20%.
Go to article

Authors and Affiliations

Janusz Tadeusz Cieśliński
1
Maciej Fabrykiewicz
1
Tomasz Stefan Wiśniewski
2
Michał Kubiś
2
Sławomir Smoleń
3
Albrecht Eicke
3
Krzysztof Dutkowski
4
Małgorzata Głuszek-Czarnecka
5

  1. Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  2. Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland
  3. Hochschule Bremen, JR Mayer-Institut für Energietechnik, Neustadswall 30, 28199 Bremen, Germany
  4. Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland
  5. Smart Fluid Inc., Rydygiera 8/20A, 01-793 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Objectives: In the article we describe the new, high frequency, 20 MHz scanning/Doppler probe designed to measure the flow mediated dilation (FMD) and shear rate (SR) close to the radial artery wall.

Methods: We compare two US scanning systems, standard vascular modality working below 12 MHz and high frequency 20 MHz system designed for FMD and SR measurements. Axial resolutions of both systems were compared by imaging of two closely spaced food plastic foils immersed in water and by measuring systolic/diastolic diameter changes in the radial artery. The sensitivities of Doppler modalities were also determined. The diagnostic potential of a high frequency system in measurements of FMD and SR was studied in vivo, in two groups of subjects, 12 healthy volunteers and 14 patients with stable coronary artery disease (CAD).

Results: Over three times better axial resolution was demonstrated for a high frequency system. Also, the sensitivity of the external single transducer 20 MHz pulse Doppler proved to be over 20 dB better (in terms of a signal-to-noise ratio) than the pulse Doppler incorporated into the linear array. Statistically significant differences in FMD and FMD/SR values for healthy volunteers and CAD patients were confirmed, p-values < 0:05. The areas under Receiver Operating Characteristic (ROC) curves for FMD and FMD/SR for the prediction CAD had the values of 0.99 and 0.97, respectively.

Conclusions: These results justify the usefulness of the designed high-frequency scanning system to determine the FMD and SR in the radial artery as predictors of coronary arterial disease.

Go to article

Authors and Affiliations

Andrzej Nowicki
Barbara Gambin
ORCID: ORCID
Wojciech Secomski
Zbigniew Trawiński
Michał Szubielski
Ryszard Tymkiewicz
Robert Olszewski

This page uses 'cookies'. Learn more