Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 55
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The experiment consisted in monitoring the count of moulds and three selected Trichoderma sp. isolates (T1 - Trichoderma atroviride, T2 - Trichoderma harzianum, T3 - Trichoderma harzianum) in vegetable (onion and tomato) waste composted with additives (straw, pig manure). Additionally, the aim of the study was to determine the type of interaction occurring between autochthonous fungi isolated from composts after the end of the thermophilic phase and Trichoderma sp. strains applied in the experiment. Number of microorganisms was determined by the plate method, next the identification was confirmed. The rating scale developed by Mańka was used to determine the type of interactions occurring between microorganisms. The greatest count of moulds in onion waste composts was noted in the object which had simultaneously been inoculated with two strains T1 - T. atroviride and T3 - T. harzianum. The greatest count of moulds was noted in the tomato waste composts inoculated with T2 - T. harzianum strain. Microscope identification revealed that Penicillum sp., Rhizopus sp., Alternaria sp. and Mucor sp. strains were predominant in onion waste composts. In tomato waste composts Penicillium was the predominant genus, followed by Rhizopus. The test of antagonism revealed the inhibitory effect of Trichoderma isolates on most autochthonous strains of moulds. Tomato waste composts proved to be better substrates for the growth and development of Trichoderma sp. isolates. The results of the study show that vegetable waste can be used in agriculture as carriers of antagonistic microorganisms.

Go to article

Authors and Affiliations

Agnieszka Wolna-Maruwka
Tomasz Piechota
Alicja Niewiadomska
Jacek Dach
Magdalena Szczech
Małgorzata Jędryczka
Agnieszka A. Pilarska
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research work was determination of humidity impact on yeast and moulds survival in fibrous filters. It was revealed that water content of about - 53-113% stimulated growth of fungi, especially in case of moulds. In stable filters humidity conditions (50% of weight), a number of fungi reached I 04 CFU/cm2 after 84 days, with the most intensive growth during first 7 days of the experiment. In the case of very low humidity ( 13% and less), the growth of fungi was not observed.
Go to article

Authors and Affiliations

Ewa Sztompka
Ewa Karwowska
Ewa Miaśkiewicz-Pęska
Download PDF Download RIS Download Bibtex

Abstract

The aim of the following work was to determine the possibility of using barley malt as a binder in moulding sands technology. The moulding sands prepared on the basis of three kinds of sands, i.e. quartz, olivine and chromite sands were analyzed. In order to determine the properties of moulding sands, typical determinations were made, i.e. moisture content, flowability, permeability, strength properties and abrasion wear. The obtained results indicate that it is possible to use barley malt as an independent binder for masses made of quartz, olivine and chromite sands.
Go to article

Bibliography

[1] Major-Gabryś, K. (2019). Environmentally friendly foundry molding and core sands. Journal of Materials Engineering and Performance. 28(7), 3905-3911. DOI: 10.1007/s11665-019-03947-x.
[2] Serghini, A. & Bieda, S. (2003). Reduction of gas emissions through the use of a new generation of organic binders in foundries. In VI Casting Conference TECHNICAL 2003. Nowa Sól, Poland. (in Polish).
[3] Holtzer, M. & Grabowska, B. (2010). Basics of environmental protection with elements of environmental management. Kraków: Wydawnictwa AGH. (in Polish).
[4] Popoola, A.P.I., Abdulwahab, M. & Fayomi, O.S.I. (2012). Synergetic performance of palm oil (Elaeis guineensis) and pine oil (Pinus sylvestris) as binders on foundry core strength. International Journal of the Phusical Sciences. 7(24), 3062-3066. DOI: 10.5897/IJPS12.347.
[5] Ochulorl, E.F., Ugboaja, J.O. & Olowomeye, O.A. (2019). Performance of kaolin and cassava starch as replacements for bentonite in moulding sand used in thin wall ductile iron castings. Nigerian Journal of Technology. 38(4), 947-956. DOI: 10.4314/njt.v38i4.18.
[6] Atanda, P.O., Akinlosotu, O. & Oluwole, L. (2014). Effect of some polysaccharide starch extracts on binding characteristics of foundry moulding sand. International Journal of Scientific and Engineering Research. 5(3), 362-367.
[7] Holtzer, M. (2003). Directions of development of molding and core sands with organic binders. Archives of Foundry. 3(9), 189-196. (in Polish).
[8] Lewandowski, J.L. (1997). Materials for casting molds. Kraków: Wydawnictwo Naukowe AKAPIT. (in Polish).
[9] Czerwiński, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metals Research. 28(3), 129-139, DOI: 10.1179/1743133614Y.0000000140. [10] da Silva, H.G., Ferreira, J.C.E., Kumar, V. & Garza-Reyes, J.A. (2020). Benchmarking of cleaner production in sand mould casting companies. Management of Environmental Quality. 31(5), 1407-1435, DOI: 10.1108/MEQ-12-2019-0272.
[11] Dobosz, S.M. Jelinek, P. & Major-Gabryś, K. (2011). Development tendencies of moulding and core sands. China Foundry. 8(4), 438-446.
[12] Bożym, M. (2018). Alternative directions for the use of foundry waste, with particular emphasis on energy management. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk (105, pp. 197–211). DOI: 10.24425/124358. (in Polish).
[13] Grabowska, B., Kaczmarska, K., Cukrowicz, S., Drożyński, D., Żymankowska-Kumon, S., Bobrowski, A. & Gawluk, B. (2018). Influence of carbon fibers addition on selected properties of microwave-cured moulding sand bonded with BioCo2 binder. Archives of Foundry Engineering. 18(3), 152-160. DOI: 10.24425/123618.
[14] Zymankowska-Kumon, S., Kaczmarska, K., Grabowska, B., Bobrowski, A. & Cukrowicz, S. (2020). Influence of the atmosphere on the type of evolved gases from phenolic binders. Archives of Foundry Engineering. 20(1), 31-36. DOI: 10.24425/afe.2020.131279.
[15] Raji, A. (2000). Strategies for Reducing Harmful Emissions in Nigerian Foundry Industry. Nigeria Jurnal of Education and Technology. 1(1), 138-144.
[16] Fox, J., Adamovits, M. & Henry, C. (2002). Strategies for reducing foundry emissions. Transactions of the American Foundry Society. 110(1-2), 1299-1309.
[17] Fayomi, O.S.I. (2016). Hybrid effect of selected local binders on the moulding properties of river niger silica sand for industrial application. Journal of Nanoscience with Advanced Technology. 1(4), 19-23. DOI: 10.24218/jnat.2016.19.
[18] Yaro, S.A. & Suleiman, M.U. (2006). Cassava / Guinea corn starches and Soybean oil as core binders in sand casting of aluminium silicon (Al-Si). Journal of Engineering and Technology (JET). 1(1), 47-55.
[19] Patwari, U., Chowdhury, S.I., Rashid, H. & Mumtaz, G.R. (2016). Comparison and CFD verification of binder effects in sand mould casting of aluminum. Annals of Faculty Engineering. Hunedoara-International- Internacional Journal of Engineering. 14(1), 143-147.
[20] Dobosz St. M. (2006). Water in molding and core sands. Kraków: Wydawnictwo. Naukowe AKAPIT. (in Polish).
[21] Jelínek P. (2004). Pojivové soustavy slévárenských formovacích směsí. Ostrava.
[22] Kowalski, S.J. (2010) General description of mass and heat transport in drying processes. Inżynieria i Aparatura Chemiczna. 49(4), 38-39. (in Polish).
[23] Shokri, N., Lehmann, P.& Or, D. (2010). Evaporation from layered porous media. Journal of Geophysical Research: Solid Earth. 115(B6), 1-12. DOI: 10.1029/2009JB006743.
[24] Kucharczyk, A. (2013.) Drying of porous materials in layered systems – Research. Roczniki Inżynierii Budowlanej. 13, 85-88. (in Polish).
[25] Zych, J. & Kaźnica, N. (2015). Moisture sorption and desorption processes on the example of moulding sands’ surface layers. Archives of Foundry Engineering. 15(4), 63-66. (in Polish).
[26] Zych, J., Kaźnica, N.& Kolczyk, J. (2017). Analysis of the drying process of moistened surface layers of sand moulds and cores on the example of moulding sand with water glass. Prace Instytutu Odlewnictwa. 57(1), 29-38. DOI: 10.7356/iod.2017.04.
[27] Khandelwal, H.& Ravi, B. (2016). Effect of molding parameters on chemically bonded sand mold properties. Journal of Manufacturing Processes. 22, 127-133. DOI: 10.1016/j.jmapro.2016.03.007.
Go to article

Authors and Affiliations

B. Samociuk
1
ORCID: ORCID
D. Nowak
1
ORCID: ORCID
D. Medyński
2
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
  2. Collegium Witelona Uczelnia Państwowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of this research was to evaluate the microbiological indoor air contamination level in chosen facilities of the primary health-care for adults and children. The total numbers of mesophilic bacteria, staphylococci, coli-group bacteria and moulds in both surgery rooms and patients’ waiting rooms were determined. Air samples were collected with a MAS 100 impactor and the concentration of microorganisms was estimated by a culture method. The microbiological air contamination level was diverse: the number of mesophilic bacteria ranged from 320 to 560 CFU/m3, number of staphylococci - 10-305 CFU/m3, coli group bacteria - 0-15 CFU/m3 and moulds - 15-35 CFU/m3. The bacteriological contamination level of the air in examined community health centers was higher than described in the literature for hospitals and exceeded the acceptable values proposed for the surgery objects.

Go to article

Authors and Affiliations

Ewa Karwowska
Ewa Miaśkiewicz-Pęska
Dorota Andrzejewska-Morzuch
Download PDF Download RIS Download Bibtex

Abstract

While analyzing shape accuracy of ferroalloy precision castings in terms of ceramic moulds physical anisotropy, low-alloy steel castings

("cover") and cast iron ("plate") were included. The basic parameters in addition to the product linear shape accuracy are flatness

deviations, especially due to the expanded flat surface which is cast plate. For mentioned castings surface micro-geometry analysis was

also carried, favoring surface load capacity tp50 for Rmax = 50%.

Surface load capacity tp50 obtained for the cast cover was compared with machined product, and casting plate surface was compared with

wear part of the conveyor belt. The results were referred to anisotropy of ceramic moulds physical properties, which was evaluated by

studying ceramic moulds samples in computer tomography equipment Metrotom 800.

Go to article

Authors and Affiliations

R. Biernacki
R. Haratym
J. Tomasik
J. Kwapisz
Download PDF Download RIS Download Bibtex

Abstract

The obtained results of heating of sand moulds with binders by means of a thermal radiation of liquid metal are presented in this study.

Standard samples for measuring Rg made of the tested moulding sands were suspended at the lower part of the cover which was covering

the crucible with liquid metal (cast iron), placed in the induction furnace. The authors own methodology was applied in investigations. The

progressing of the samples surface layers heating process was determined as the heating time function. Samples of a few kinds of

moulding sands with chemical binders were tested. Samples without protective coatings as well as samples with such coatings were tested.

The influence of the thermal radiation on bending resistance of samples after their cooling was estimated. The influence of several

parameters such as: time of heating, distance from the metal surface, metal temperature, application of coatings, were tested. A very fast

loss of strength of moulding sands with organic binders was found, especially in cases when the distance between metal and sample

surfaces was small and equaled to 10÷15 mm. Then, already after app. 15 seconds of the radiation (at Tmet=1400o

C), the resistance

decreases by nearly 70%. Generally, moulding sands with organic binders are losing their strength very fast, while moulding sands with

water glass at first increase their strength and later slightly lose. The deposition of protective coatings increases the strength of the mould

surface layers, however does not allow to retain this strength after the metal thermal radiation.

Go to article

Authors and Affiliations

J. Zych
J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

This article investigates possible use of waste gypsum (synthetic), recovered via flue-gas desulfurization from coal-fired electric power plants, in foundries. Energy sector, which in Eastern Europe is mostly composed from coal-fired electric power plants, is one of the largest producers of sulfur dioxide (SO2). In order to protect the environment and reduce the amount of pollution flue-gas desulfurization (FGD) is used to remove SO2 from exhaust flue gases of fossil-fuel power plants. As a result of this process gypsum waste is produced that can be used in practical applications. Strength and permeability tests have been made and also in-depth analysis of energy consumption of production process to investigate ways of preparing the synthetic gypsum for casting moulds application. This paper also assesses the chemical composition, strength and permeability of moulds made with synthetic gypsum, in comparison with moulds made with traditional GoldStar XL gypsum and with ceramic molds. Moreover examination of structure of synthetic gypsum, the investigations on derivatograph and calculations of energy consumption during production process of synthetic gypsum in wet flue-gas desulfurization were made. After analysis of gathered data it’s possible to conclude that synthetic gypsum can be used as a material for casting mould. There is no significant decrease in key properties, and on the other hand there is many additional benefits including low energy consumption, decreased cost, and decreased environmental impact.

Go to article

Authors and Affiliations

R. Biernacki
R. Haratym
J. Kwapisz
Download PDF Download RIS Download Bibtex

Abstract

The weld lines that occur in injection mouldings are critical areas on which depends on the strength of the mouldings. The flow of the material in the injection mould takes place through the gate and then gradually in the mould cavity. Depending on the shape of the formed object, the weld line may or may not occur. In the case of spreading of plastic streams or bypassing obstacles in the form of cores in the mould, the joining lines run down. Most often, the strength of the moulded part is the lowest in these areas and the resulting lines can cause cracking. The aim of the research presented in the publication was to evaluate the properties of particular parts of mouldings obtained from an experimental injection mould equipped with 4 weld line areas. The tests were performed using the method of thermal analysis by Dynamic Mechanical Analysis DMA. Tensile tests were performed on the parts with weld areas and the maximum crack force was determined. The morphology of the obtained fractures was observed using an optical microscope.
Go to article

Authors and Affiliations

R. Humienny
1
ORCID: ORCID
P. Postawa
1
ORCID: ORCID
A. Kalwik
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Finite Element Method FEM via commercially available software has been used for numerical simulation of the compaction process of bentonite-bonded sand mould. The mathematical model of soil plasticity which involved Drucker-Prager model match with Mohr-Coulomb model was selected. The individual parameters which required for the simulation process were determined through direct shear test based on the variation of sand compactability. The novelty of this research work is that the individual micro-mechanical parameters were adopted depend on its directly proportional to the change of sand density during the compaction process. Boundary conditions of the applied load, roller and fixed constraint were specified. An extremely coarse mesh was used and the solution by time-dependent study was done for investigation of material-dependent behaviour of green sand during the compaction process. The research implemented also simulation of the desired points in sand mould to predict behaviour of moulding process, and prevent failure of the sand mould. Distance-dependent displacement and distance-dependent pressure have been determined to investigate the effective moulding parameters without spent further energy and cost for obtaining green sand mould. The obtained numerical results of the sand displacement show good agreement with the practical results.
Go to article

Bibliography

[1] Naeimi, K., Baradaran, H., Ahmadi, R. & Shekari, M. (2015). Study and simulation of the effective factors on soil compaction by tractors wheels using the finite element method. Journal of Computational Applied Mechanics. 46(2), 107-115. DOI: 10.22059/jcamech.2015.55093.
[2] Soane, B. (1990). The role of organic matter in soil compatibility: A review of some practical aspects. Soil & Tillage Research. 16(1-2), 179-201. DOI: https://doi.org/ 10.1016/0167-1987(90)90029-D.
[3] Minaei, S. (1984). Multi pass effects of wheel and track- type vehicles on soil compaction. MS Thesis, Virginia Polytechnic Institute and State University.
[4] Chen, Y. Tessier, Y. & Rauffignat, S. (1998). Soil bulk density estimation for tillage systems and soil texture. Transactions of the American Society of Agricultural and Biological Engineers. 41(4), 1601-1610.
[5] Wenzhen, L. & Junjiao, W. (2007). Numerical Simulation of Compacting Process of Green Sand Molding Based on Sand Filling. Materials Science Forum. 561-565, 879-1882. DOI: https://doi.org/10.4028/www.scientific.net/MSF.561-565.1879.
[6] Hovad, E., Larsen, P., Walther, J., Thorborg, J. & Hattel,. J.H. (2015). Flow Dynamics of green sand in the DISAMATIC moulding process using Discrete element method (DEM). IOP Conference Series Materials Science and Engineering. 84(1) 1-8. DOI: 10.1088/1757-899X/84/1/012023.
[7] Hua, L., Junjiao, W., Tianyou, H. & Hiroyasu, M. (2011). A new numerical simulation model for high pressure squeezing moulding. China foundry. 8(1) 25-29. ID: 1672-6421(2011)01-025-05.
[8] Schijndel, van, A.W.M.(2007). Integrated heat air and moisture modeling and simulation. Doctoral dissertation, Eindhoven University of Technology. https://doi.org/ 10.6100/IR622370.
[9] Terzaghi, K. (1976). Earthwork mechanics based on soil physics (in German). G. Gistel & Cie. GmbH, Wien.
[10] Tomas, J. (1991). Modeling of the flow behavior of bulk solids on the basis of the interaction forces between the particles and applications in the design of bunkers (in German). Habilitation thesis, TU Bergakademie Freiberg.
[11] Inoue, Y., Motoyama, Y., Takahashi, H., Shinji, K. & Yoshida, M. (2013). Effect of sand mold models on the simulated mold restraint force and the contraction of the casting during cooling in green sand molds. Journal of Materials Processing Technology. 213(7), 1157-1165. https://doi.org/10.1016/j.jmatprotec.2013.01.011.
[12] Kadauw, A. (2006). Mathematical modeling of the moulding material processes (in German). Doctoral dissertation, TU- Bergakademie Freiberg.
[13] Lang, H.-J., Huder, J., Amann, P., Puzrin, A.M. (1996). Soil mechanics and foundation (in German). Springer, Berlin Heidelberg.
[14] Suroso, P., Samang, L., Tjaronge, W. & Muhammad Ramli. (2016). Estimates of Elasticity and Compressive Strenght in Soil Cement Mixed With Ijuk-Aren, International Journal of Innovative Research in Advanced Engineering (IJIRAE), 3(4), 21-26.
[15] Nujid, M.M. & Taha, M.R. (2016). Soil Plasticity Model for Analysis of Collapse Load on Layers Soil. EDP Sciences, MATEC Web of Conferences. 47(03020) 1-6. DOI: 10.1051/matecconf/ 20164703020.
[16] Chen, W.F. Mizuno, E. (1990). Nonlinear Analysis in Soil Mechanics: Theory and Implementation, Elsevier Science Publishers B. V., ISBN 978-0444430434, 5-36.
[17] Bast, J., Kadauw, A. (2004). 3D-Numerical Simulation of Squeeze Moulding with the Finite element Method. Proceeding of 66th World Foundry Congress Istanbul, 247 - 258.
Go to article

Authors and Affiliations

Dheya Abdulamer
ORCID: ORCID
A. Kadauw
1 2

  1. IMKF. TU - Bergakademie Freiberg, Germany
  2. Salahddin University-Erbil, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The parameters of the injection moulding process have a significant influence on the properties of the moulded parts. Selection of appropriate injection conditions (e. g. the injection temperature, mould temperature, injection and holding pressure, injection speed) contributes to the productivity and energy consumption of the injection moulding process as well as to the quality of the moulded parts. The aim of this study was to evaluate the influence of injection moulding parameters on properties of poly(ethylene) mouldings. Regranulate obtained from recycled film, which is a mixture of low-density poly(ethylene) and linear low-density poly(ethylene), was used for testing. Samples in the form of standardised tensile bars of type A1 were produced by injection moulding. A Krauss-Maffei KM65-160C4 injection moulding machine was used for this purpose. Variable parameters of the this process used in the study were: injection speed, mould temperature and holding pressure. The results of tensile strength tests of the obtained samples are presented. The weight and dimensions of mouldings from four different regranulates were also investigated. The effect of injection moulding conditions on the properties of poly(ethylene) mouldings was shown in the investigations. The mass of poly(ethylene) mouldings is dependent on the holding pressure.
Go to article

Authors and Affiliations

A. Kalwik
1
ORCID: ORCID
R. Humienny
1
ORCID: ORCID
K. Mordal
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The work presents the results of the studies of Co-Cr-Mo casting alloys used in the production of frame casts of removable dentures,

crowns and bridges in dental prosthetics. The studies were performed on four Co-Cr-Mo alloys of different contents of Mo, W and other

additives. Electrochemical tests were performed, which aimed at examining the corrosion resistance of the alloys and observing the alloy

structure after chronoamperometric tests with the potential in the area of the occurrence of the passive layer breakpoint. The alloy

microstructure images after chronoamperometric tests show the presence of non-uniformly distributed general corrosion. Moreover, a

project of cobalt alloy casting was elaborated using a ceramic mold casting. Additionally, analysis of the obtained microstructure was

performed. The microstructure of the examined alloys was of the dendrite type. This microstructure was chemically inhomogeneous and

consisted of an austenitic matrix formed by a solid cobalt solution and chromium in the core dendritic structure.

Go to article

Authors and Affiliations

J. Loch
A. Krzykała
A. Łukaszczyk
J. Augustyn-Pieniążek
Download PDF Download RIS Download Bibtex

Abstract

Casting industry has been enriched with the processes of mechanization and automation in production. They offer both better working standards, faster and more accurate production, but also have begun to generate new opportunities for new foundry defects. This work discusses the disadvantages of processes that can occur, to a limited extend, in the technologies associated with mould assembly and during the initial stages of pouring. These defects will be described in detail in the further part of the paper and are mainly related to the quality of foundry cores, therefore the discussion of these issues will mainly concern core moulding sands. Four different types of moulding mixtures were used in the research, representing the most popular chemically bonded moulding sands used in foundry practise. The main focus of this article is the analysis of the influence of the binder type on mechanical and thermal deformation in moulding sands.
Go to article

Authors and Affiliations

A. Grabarczyk
1
ORCID: ORCID
K. Major-Gabryś
1
ORCID: ORCID
J. Jakubski
1
ORCID: ORCID
St.M. Dobosz
1
ORCID: ORCID
D. Bolibruchová
2
ORCID: ORCID
R. Pastirčák
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. University of Zilina, Žilinská Univerzita v Žiline, Faculty of Mechanical Engineering, Žilina, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

The results of computer modelling of an injection moulding process with microcellular foaming (MuCell®) were presented in this work. The process is based on the dissolving nitrogen in a liquid polymer which is possible when nitrogen is in supercritical fluid state (SCF). After pressure drop of the melt in the injection mould the intensive nucleation of pores occurs and, as the result, the material with high concentration of small pores is created. The pores obtained in this way are of much smaller size than in a conventional foaming process. The pore size in the cross-section of an exemplary injection moulded part was calculated in the computer modelling and compared to the results of microscopical investigation made on the real injection moulded part. It was found that the size of the pores depends on the flow length inside the injection mould and on the position in the part’s cross-section.
Go to article

Authors and Affiliations

J. Nabiałek
1
ORCID: ORCID
T. Jaruga
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The injection moulding conditions may change the degree of crystallinity of the plastic to some extent, which affects the mechanical properties such as tensile strength and hardness. Moreover, the cooling conditions of the moulded parts may contribute to changes in their shrinkage. The paper presents the results of determination of the melting enthalpy of a polypropylene. The melting enthalpy ∆ Hm was determined by differential scanning calorimetry. It was found, that the value of the melting enthalpy depends on the physical conditions prevailing during the sample production process, such as the temperature of the liquid material, the cooling rate of the plastic (related to the mould temperature Tm) and the flow rate of the plastic in the mould. The degree of crystallinity of the obtained samples was also determined, which, depending on the measured enthalpy of fusion, influences the degree of structural order of the polymer. Standardized test samples were also analysed in terms of transversal shrinkage and longitudinal shrinkage. The shrinkage of the injection moulded parts results from the change of physical state of plastic during its solidification in the mould.
Go to article

Authors and Affiliations

P. Palutkiewicz
1
ORCID: ORCID
A. Kalwik
1
ORCID: ORCID
T. Jaruga
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 19C Armii Krajowej Av., 42- 201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main objective of the present study is enhanced of the sand moulding process through addressing the sand mould defects and failures, ultimately lead to improve production of the sand castings with well-defined of pattern profiles. The research aimed to reduce the cost and energy expenditure associated with the compaction time of the sand moulding process. Practical destructive tests were conducted to assess properties of the green sand moulds. Linear regression and multi-regression methods were employed to identify the key factors influencing the sand moulding process. The proposed experimental destructive tests and predicted regression methods facilitated measurement of the green sand properties and enabled evaluation of the effective moulding parameters, thereby enhancing the sand moulding process. Factorial design of experiments approach was employed to evaluate effect of parameters of water content and mixing time of the green sand compaction process on the mechanical properties of green sand mould namely the tensile strength, and compressive strength.
Go to article

Bibliography

[1] Abdulamer, D. & Kadauw, A. (2019). Development of mathematical relationships for calculating material-dependent flowability of green molding sand. Journal of Materials Engineering and Performance. 28(7), 3994-4001. DOI: https://doi.org/10.1007/s11665-019-04089-w.
[2] Shahria, S., Tariquzzaman, M., Rahman, H., Al Amin, M., & Rahman, A. (2017). Optimization of molding sand composition for casting Al alloy. International Journal of Mechanical Engineering and Applications. 5(3), 155-161. DOI:10.11648/j.ijmea.20170503.13.
[3] Patil, G. & Inamdar, K. (2014). Optimization of casting process parameters using taguchi method. International Journal of Engineering Development and Research. 2(2), 2506-2511.
[4] Kassie, A. & Assfaw, S. (2013). Minimization of casting defects. IOSR Journal of Engineering. 3(5), 31-38. DOI:10.9790/3021-03513138.
[5] Gadag, S. Sunni Rao, K. Srinivasan, M. et al. (1987). Effect of organic additives on the properties of green sand assessed from design of experiments. AFS Transactions. 42, 179-186.
[6] Karunaksr, D. & Datta, G. (2007). Controlling green sand mold properties using artificial neural networks and genetic algorithms- A comparison. Applied Caly Science. 37(1-2), 58-66. DOI:10.1016/j.clay.2006.11.005.
[7] Said, R. Kamal, M. Miswan, N. & Ng, S. (2018). Optimization of moulding composition for quality improvement of sand casting. Journal of Advanced Manufacturing Technology. 12(1(1), 301-310.
[8] Pulivarti, S. & Birru, A. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15, 152-159. DOI: 10.1007/s41230-018-7188-1.
[9] Abdulamer, D. (2023). Impact of the different moulding parameters on engineering properties of the green sand mould. Archives of Foundry. 23(2), 5-9. DOI: 10.24425/afe.2023.144288.
[10] Kumar, S. Satsangi, P. & Prajapati, D. (2011). Optimization of green sand casting process parameters of a foundry by using taguchi’s method. International Journal of Advanced Manufacturing Technology. 55(1-4), 23-34. DOI: 10.1007/s00170-010-3029-0.
[11] Murguía, P. Ángel, R. Villa González del Pino, E. Villa, Y. & Hernández del Sol, J. (2016). Quality improvement of a casting process using design of experiments. Prospectiva. 14(1), 47-53. DOI: 10.15665/rp.v14i1.648.
[12] Abdullah, A. Sulaiman, S. Baharudin, B. Arifin, M. & Vijayaram, T. (2012). Testing for green compression strength and permeability properties on the tailing sand samples gathered from ex tin mines in perak state, Malaysia. Advanced Materials Research. 445, 859-864. DOI: 10.4028/www.scientific.net/AMR.445.859.
[13] Abdulamer, D. (2021). Investigation of flowability of the green sand mould by remote control of portable flowability sensor. Archives of Materials Science and Engineering, 112(2), 70-76. DOI: 10.5604/01.3001.0015.6289.
[14] Bast, J., Simon, W. & Abdullah, E. (2010). Investigation of cogs defects reason in green sand moulds. Archives of Metallurgy and Materials. 55(3), 749-755. DOI: 10.24425/afe.2023.144288.
[15] Montgomery, D.C. (2001). Design and Analysis of Experiments. (5th ed.). John Wiley & Sons, Inc.
[16] Dhindaw, B.K., Chakraborty, M. (1974). Study and control of properties and behavior of different sand systems by application of statistical design of experiments In the 41st International Foundry Congress, (pp. 9-14). Belgique.
[17] Abdulamer, D. (2023). Utilizing of the statistical analysis for evaluation of the properties of green sand mould. Archives of Foundry Engineering. 23(3), 67-73, DOI: 10.24425/afe.2023.146664, 2023.
[18] Parappagoudar, M. Pratihar, D. & Datta, G. (2007). Linear and non-linear statistical modelling of green sand mould system. International Journal of Cast Metals Research. 20(1), 1-13. DOI: 10.1179/136404607X184952.
[19] Dietert, H. W. Brewster, F. S. & Graham, A. L. (1996). AFS Trans. 74, 101-111.
[20] Parappagoudar, M. Pratihar, D. & Datta G. (2005). Green sand mould system modelling through design of experiments. Indian Foundry Journal. 51(4), 40-51.

Go to article

Authors and Affiliations

Dheya Abdulamer
1
ORCID: ORCID

  1. University of Technology- Iraq
Download PDF Download RIS Download Bibtex

Abstract

The results of testing the strength properties of experimental ceramic materials containing spending moulding sand after initial mechanical reclamation as a material for subsequent layers of the stucco composition were presented. Tests were carried out on spent moulding sands from various foundry technologies, i.e. sand with furfuryl resin and sand with hydrated sodium silicate. The spent, agglomerated moulding sand has undergone a crushing process. Next, the required granular fractions used for individual layers of the stucco material were separated. Ceramic samples, in which the spent moulding sand was a substitute for fresh silica sand in successive layers of the stucco composition, were prepared. As a reference material, identical ceramic samples were used but with all layers made from the fresh silica sand. Samples prepared in this way were used to determine the bending strength of ceramic materials in the temperature range from 20 to 900ºC. The obtained values of the bending strength have demonstrated that spent moulding sand can be used in investment casting with no adverse effect on the strength of ceramic materials.

Go to article

Authors and Affiliations

M. Angrecki
ORCID: ORCID
J. Kamińska
ORCID: ORCID
J. Jakubski
ORCID: ORCID
P. Wieliczko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

More and more foundry plants applying moulding sands with water-glass or its substitutes for obtaining the high-quality casting surface at the smallest costs, consider the possibility of implementing two-layer moulds, in which e.g. the facing sand is a sand with an organic binder (no-bake type) and the backing sand is a sand with inorganic binder. Both kinds of sands must have the same chemical reaction. The most often applied system is the moulding sand on the water-glass or geopolymer bases – as the backing sand and the moulding sand from the group of self-hardening sands with a resol resin – as the facing sand. Investigations were performed for the system: moulding sand with inorganic GEOPOL binder or moulding sand with water glass (as a backing sand) and moulding sand, no-bake type, with a resol resin originated from various producers: Rezolit AM, Estrofen, Avenol NB 700 (as a facing sand). The LUZ apparatus, produced by Multiserw Morek, was adapted for investigations. A special partition with cuts was mounted in the attachment for making test specimens for measuring the tensile strength. This partition allowed a simultaneous compaction of two kinds of moulding sands. After 24 hours of hardening the highest values were obtained for the system: Geopol binder - Avenol resin.
Go to article

Authors and Affiliations

M. Holtzer
A. Bobrowski
D. Drożyński
J. Makselon
Download PDF Download RIS Download Bibtex

Abstract

The investigation results of the kinetics of binding ceramic moulds, in dependence on the solid phase content in the liquid ceramic slurries being 67, 68 and 69% - respectively, made on the basis of the aqueous binding agents Ludox AM and SK. The ultrasonic method was used for assessing the kinetics of strengthening of the multilayer ceramic mould. Due to this method, it is possible to determine the ceramic mould strength at individual stages of its production. Currently self-supporting moulds, which must have the relevant strength during pouring with liquid metal, are mainly produced. A few various factors influence this mould strength. One of them is the ceramic slurry viscosity, which influences a thickness of individual layers deposited on the wax model in the investment casting technology. Depositing of layers causes increasing the total mould thickness. Therefore, it is important to determine the drying time of each deposited layer in order to prevent the mould cracking due to insufficient drying of layers and thus the weakening of the multilayer mould structure.

Go to article

Authors and Affiliations

J. Kolczyk
Ł. Jamrozowicz
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The study discusses the issues connected with the production of thin-walled ceramic slurry in the replicast cs technology. In the ceramic mould production process, a special role is played by the liquid ceramic slurry used to produce the first layer of the mould. The study examines selected technological properties of liquid ceramic slurries used to produce moulds in the replicas cs technology. The ceramic slurries for the tests were prepared based on the binders Ludox Px30 and Sizol 030, enriched with Refracourse flour. The wettability of the pattern's surface by the liquid ceramic slurry and the dependence of the apparent viscosity on the ceramic flour content in the mixture were determined. The wettability of the pattern surface by the liquid ceramic slurry was determined based on the measurement of the wetting angle. The angle was determined by means of an analysis of the computer image obtained with the use of a CDC camera.

Go to article

Authors and Affiliations

R. Kaczorowski
T. Pacyniak
P. Just
Download PDF Download RIS Download Bibtex

Abstract

In contrast to casting to conventional non-reusable “sand” moulds, for which calculating technique for an optimum design of the gating system is comparatively well-developed, a trial-and-error method is applied mostly for casting to ceramic shell moulds made by the investment casting technology. A technologist selects from gating systems of several types (that are standardized by the foundry mostly) on the basis of experience. However, this approach is not sustainable with ever growing demands on quality of castings and also the economy of their fabrication as well as with new types of complex sizeable castings introduced to the production gradually (by new customers from the aircraft industry above all) any more. The simulation software may be used as a possible tool for making the process of optimising gating systems more effective.

Go to article

Authors and Affiliations

I. Stachovec
M. Horáček
L. Zemčík
V. Kolda
J. Horenský
Download PDF Download RIS Download Bibtex

Abstract

The new investigation method of a permeability of ceramic moulds applied in the investment casting technology, is presented in the paper. Some concepts of performing permeability measurements are shown. Investigations in which the influence of the solid phase fraction in the liquid ceramic moulding sand (LCMS) on a permeability of a multi-layer ceramic mould were performed and discussed. The permeability was estimated during two the most important stages of the technological process: in the first – after wax melting and in the second – after mould annealing. Also an influence of the matrix grain sizes (material for sprinkling) on a ceramic mould permeability was estimated.
Go to article

Authors and Affiliations

J. Zych
J. Kolczyk
T. Snopkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The article contains the results of tests performed under the target project in Hardtop Foundry Charsznica. The objective of the tests and studies was to develop a technology of making high-quality ductile iron castings, combined with effective means of environmental protection. The studies presented in this article related to castings weighing from 1 to 300 kg made from ductile iron of grades 400-15 and 500-7, using two-layer moulds, where the facing and core sand was the sand with an alkaline organic binder, while backing sand was the sand with an inorganic geopolymer binder. A simplified method of sand reclamation was applied with possible reuse of the reclaim as an addition to the backing sand. The cast iron spheroidising treatment and inoculation were selected taking into account the specific conditions of Hardtop Foundry. A pilot batch of castings was made, testing the gating and feeding systems and using exothermic sleeves on risers. The study confirmed the validity of the adopted concept of making ductile iron castings in layer moulds, while maintaining the content of sand with an organic binder at a level of maximum 15%.
Go to article

Authors and Affiliations

M. Rączka
K. Gandurski
B. Isendorf
Download PDF Download RIS Download Bibtex

Abstract

During excavation of the cremation cemetery of urnfield culture in Legnica at Spokojna Street (Lower Silesia, Poland), dated to 1100-700

BC, the largest - so far in Poland – a collection of casting moulds from the Bronze Age was discovered: three moulds for axes casting

made out of stone and five moulds for casting sickles, razors, spearhead and chisels, made out of clay. This archaeological find constituted

fittings of foundrymen’s graves. In order to perform the complete analysis of moulds in respect of their application in the Bronze Age

casting technology analytical methods, as well as, computer aided methods of technological processes were used. Macroscopic

investigations were performed and the X-ray fluorescence spectrometry method was used to analyse the chemical composition and metal

elements content in mould cavities. Moulds were subjected to three-dimensional scanning and due to the reverse engineering the geometry

of castings produced in these moulds were obtained.

The gathered data was used to perform design and research works by means of the MAGMA5

software. Various variants of the pouring

process and alloys solidification in these archaeological moulds were simulated. The obtained results were utilised in the interpretation of

the Bronze Age casting production in stone and clay moulds, with regard to their quality and possibility of casting defects occurrence

being the result of these moulds construction.

The reverse engineering, modelling and computer simulation allowed the analysis of moulds and castings. Investigations of casting moulds

together with their digitalisation and reconstruction of casting technology, confirm the high advancement degree of production processes

in the Bronze Age.

Go to article

Authors and Affiliations

A. Garbacz-Klempka
Z. Kwak
T. Stolarczyk
M. Szucki
P.L. Żak
D. Ścibior
K. Nowak
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the issue of using moulding sands with a new two-component binder: furfuryl-resole resin – PCL polycaprolactone for the production of ductile iron heavy castings. The previous laboratory studies showed the possibility of using biodegradable materials as binders or parts of binders’ compositions for foundry moulding and core sands. The research proved that addition of new biodegradable PCL in the amount of 5% to the furfuryl-resole resin does not cause significant changes in moulding sand’s properties. The article presents research related to the production of ductile iron castings with the use of moulds with a modified composition, i.e. sands with furfuryl resole resin with and without PCL. Mechanical properties and microstructure of the casting surface layer at the metal/ mould interface are presented. The obtained test results indicate that the use of a biodegradable additive for making foundry moulds from moulding sand with a two-component binder does not deteriorate the properties of ductile iron castings.
Go to article

Authors and Affiliations

M. Hosadyna-Kondracka
1
ORCID: ORCID
K. Major-Gabryś
2
ORCID: ORCID
M. Warmuzek
1
ORCID: ORCID
M. Brůna
3
ORCID: ORCID

  1. Lukasiewicz Research Network – Krakow Institute of Technology, 73 Zakopiańska Str., 30-418 Krakow, Poland
  2. AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Foundry of Non-ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
  3. University of Žilina, Department of Technological Engineering, Faculty of Mechanical Engineering, Univerzitná 1, 010 26, Slovak Republic

This page uses 'cookies'. Learn more