Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the design of digital controller for longitudinal aircraft model based on the Dynamic Contraction Method. The control task is formulated as a tracking problem of velocity and flight path angle, where decoupled output transients are accomplished in spite of incomplete information about varying parameters of the system and external disturbances. The design of digital controller based on the pseudo-continuous approach is presented, where the digital controller is the result of continuous-time controller discretization. A resulting output feedback controller has a simple form of a combination of low-order linear dynamical systems and a matrix whose entries depend nonlinearly on certain known process variables. Simulation results for an aircraft model confirm theoretical expectations.

Go to article

Authors and Affiliations

Roman Czyba
Lukasz Stajer
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a concept of humanoid robot motion generation using the dedicated simplified dynamic model of the robot (Extended Cart-Table model). Humanoid robot gait with equal steps length is considered. Motion pattern is obtained here with use of Preview Control method. Motion trajectories are first obtained in simulations (off-line) and then they are verified on a test-bed. Tests performed using the real robot confirmed the correctness of the method. Robot completed a set of steps without losing its balance.

Go to article

Authors and Affiliations

Maksymilian Szumowski
Magdalena Sylwia Żórawska
Teresa Zielińska
Download PDF Download RIS Download Bibtex

Abstract

This work describes a new study to achieve a combination of modified function projective synchronization between three different chaotic systems through adaptive control. Using the Lyapunov function theory, the asymptotic stability of the error dynamics is obtained and discussed. Further, we set some appropriate initial conditions for the state variables and assigning specific values to the parameters and obtain the graphical results, which shows the efficiencies of the new method. Finally, we summarized our work with conclusion and references.

Go to article

Authors and Affiliations

N.A. Almohammadi
E.O. Alzahrani
M.M. El-Dessoky
Download PDF Download RIS Download Bibtex

Abstract

The LQR (linear quadratic regulator) control problem subject to singular system constitutes a optimization problem in which one must be find an optimal control that satisfy the singular system and simultaneously to optimize the quadratic objective functional. In this paper we establish a sufficient condition to obtain the optimal control of discounted LQR optimization problem subject to disturbanced singular system where the disturbance is time varying. The considered problem is solved by transforming the discounted LQR control problem subject to disturbanced singular system into the normal LQR control problem. Some available results in literatures of the normal LQR control problem be used to find the sufficient conditions for the existence of the optimal control for discounted LQR control problem subject to disturbanced singular system. The final result of this paper is in the form a method to find the optimal control of discounted LQR optimization problem subject to disturbanced singular system. The result shows that the disturbance is vanish with the passage of time.

Go to article

Authors and Affiliations

Lyra Yulianti
Admi Nazra
Zulakmal
Arifah Bahar
Muhafzan
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a robust control technique for small-scale unmanned helicopters to track predefined trajectories (velocities and heading) in the presence of bounded external disturbances. The controller design is based on the linearized state-space model of the helicopter. The multivariable dynamics of the helicopter is divided into two subsystems, longitudinallateral and heading-heave dynamics respectively. There is no strong coupling between these two subsystems and independent controllers are designed for each subsystem. The external disturbances and model mismatch in the longitudinal-lateral subsystem are present in all (matched and mismatched) channels. This model mismatch and external disturbances are estimated as lumped disturbances using extended disturbance observer and an extended disturbance observer based sliding mode controller is designed for it to counter the effect of these disturbances. In the case of heading-heave subsystem, external disturbances and model mismatch only occur in matched channels so a second order sliding mode controller is designed for it as it is insensitive to matched uncertainties. The control performance is successfully tested in Simulink.

Go to article

Authors and Affiliations

Ihsan Ullah
Hai-Long Pei
Download PDF Download RIS Download Bibtex

Abstract

The methane hazard is one of the most dangerous phenomena in hard coal mining. In a certain range of concentrations, methane is flammable and explosive. Therefore, in order to maintain the continuity of the production process and the safety of work for the crew, various measures are taken to prevent these concentration levels from being exceeded. A significant role in this process is played by the forecasting of methane concentrations in mine headings. This very problem has been the focus of the present article. Based on discrete measurements of methane concentration in mine headings and ventilation parameters, the distribution of methane concentration levels in these headings was forecasted. This process was performed on the basis of model-based tests using the Computational Fluid Dynamics (CFD). The methodology adopted was used to develop a structural model of the region under analysis, for which boundary conditions were adopted on the basis of the measurements results in real-world conditions. The analyses conducted helped to specify the distributions of methane concentrations in the region at hand and determine the anticipated future values of these concentrations. The results obtained from model-based tests were compared with the results of the measurements in realworld conditions. The methodology using the CFD and the results of the tests offer extensive possibilities of their application for effective diagnosis and forecasting of the methane hazard in mine headings.

Go to article

Authors and Affiliations

Jarosław Brodny
Magdalena Tutak
Download PDF Download RIS Download Bibtex

Abstract

Given a linear discrete system with initial state x0 and output function yi , we investigate a low dimensional linear systemthat produces, with a tolerance index ǫ, the same output function when the initial state belongs to a specified set, called ǫ-admissible set, that we characterize by a finite number of inequalities. We also give an algorithm which allows us to determine an ǫ-admissible set.

Go to article

Authors and Affiliations

A. Abdelhak
M. Rachik
Download PDF Download RIS Download Bibtex

Abstract

We derive exact and approximate controllability conditions for the linear one-dimensional heat equation in an infinite and a semi-infinite domains. The control is carried out by means of the time-dependent intensity of a point heat source localized at an internal (finite) point of the domain. By the Green’s function approach and the method of heuristic determination of resolving controls, exact controllability analysis is reduced to an infinite system of linear algebraic equations, the regularity of which is sufficient for the existence of exactly resolvable controls. In the case of a semi-infinite domain, as the source approaches the boundary, a lack of L2-null-controllability occurs, which is observed earlier by Micu and Zuazua. On the other hand, in the case of infinite domain, sufficient conditions for the regularity of the reduced infinite system of equations are derived in terms of control time, initial and terminal temperatures. A sufficient condition on the control time, heat source concentration point and initial and terminal temperatures is derived for the existence of approximately resolving controls. In the particular case of a semi-infinite domain when the heat source approaches the boundary, a sufficient condition on the control time and initial temperature providing approximate controllability with required precision is derived.

Go to article

Authors and Affiliations

Asatur Zh. Khurshudyan
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.

Go to article

Authors and Affiliations

Dušan Krokavec
Anna Filasová
Download PDF Download RIS Download Bibtex

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.

Go to article

Authors and Affiliations

Tadeusz Kaczorek
ORCID: ORCID

This page uses 'cookies'. Learn more