Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are experiences from operation of three different expansion devices for possible implementation in the domestic micro CHP. These were the modified scroll expander and two designs based on the variable working chamber volume pneumatic devices. Experiments showed the superiority of both "pneumatic devices" over the scroll expander, indicating the possible internal efficiencies in the range of 61 82Such efficiencies are very attractive, especially at the higher end of that range. The volume of these devices is much smaller than the scroll expander which makes it again more suitable for a domestic micro CHP. Small rotational velocities enable to conclude that connection to electricity grid will also be simpler in the case of "pneumatic devices". The "pneumatic devices" under scrutiny here could be an alternative to the typical vapour turbine in the ORC cycle, which is in the process of development at the IFFM.

Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jarosław Mikielewicz
Jan Wajs
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are the issues related to the design and operation of micro heat exchangers, where phase changes can occur, applicable to the domestic micro combined heat and power (CHP) unit. Analysed is the stability of the two-phase flow in such unit. A simple hydraulic model presented in the paper enables for the stability analysis of the system and analysis of disturbance propagation caused by a jump change of the flow rate. Equations of the system dynamics as well as properties of the working fluid are strongly non-linear. A proposed model can be applicable in designing the system of flow control in micro heat exchangers operating in the considered CHP unit.
Go to article

Authors and Affiliations

Dariusz Mikielewicz
Jarosław Mikielewicz

This page uses 'cookies'. Learn more